Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Sep 28;115(2):241–252. doi: 10.1016/0041-008X(92)90329-Q

Epithelial injury and interstitial fibrosis in the proximal alveolar regions of rats chronically exposed to a simulated pattern of urban ambient ozone

Ling-Yi Chang , Ying Huang , Barbara L Stockstill , Judith A Graham , Elaine C Grose , Margaret G Menache , Frederick J Miller , Daniel L Costa , James D Crapo
PMCID: PMC7130134  PMID: 1641858

Abstract

Electron microcopic morphometry was used to study the development of lung injury during and after chronic (78 weeks) exposure to a pattern of ozone (O3) designed to simulate high urban ambient concentrations that occur in some environments. The daily exposure regimen consisted of a 13-hr background of 0.06 ppm, an exposure peak that rose from 0.06 to 0.25 ppm, and returned to the background level over a 9-hr period, and 2-hr downtime for maintenance. Rats were exposed for 1, 3, 13, and 78 weeks. Additional groups of rats exposed for 13 or 78 weeks were allowed to recover in filtered clean air for 6 or 17 weeks, respectively. Rats exposed to filtered air for the same lengths of time were used as controls. Samples from proximal alveolar regions and terminal bronchioles were obtained by microdissection. Analysis of the proximal alveolar region revealed a biphasic response. Acute tissue reactions after 1 week of exposure included epithelial inflammation, interstitial edema, interstitial cell hypertrophy, and influx of macrophages. These responses subsided after 3 weeks of exposure. Progressive epithelial and interstitial tissue responses developed with prolonged exposure and included epithelial hyperplasia, fibroblast proliferation, and interstitial matrix accumulation. The epithelial responses involved both type I and type II epithelial cells. Alveolar type I cells increased in number, became thicker, and covered a smaller average surface area. These changes persisted throughout the entire exposure and did not change during the recovery pefiod, indicating the sensitivity of these cells to injury. The main response of type II epithelial cells was cell proliferation. The accumulation of interstitial matrix after chronic exposure consisted of deposition of both increased amounts of basement membrane and collagen fibers. Interstitial matrix accumulation underwent partial recovery during follow-up periods in air; however, the thickening of the basement membrane did not resolve. Analysis of terminal bronchioles showed that short-term exposure to O3 caused a loss of ciliated cells and differentiation of preciliated and Clara cells. The bronchiolar cell population stabilized on continued exposure; however, chronic exposure resulted in structural changes, suggesting injury to both ciliated and Clara cells. We conclude that chronic exposure to low levels of O3 causes epithelial inflammation and interstitial fibrosis in the proximal alveolar region and bronchiolar epithelial cell injury.

Footnotes

This work was supported in part by EPA cooperative agreement CR813113 and a contract from Southern California Edison Co. This report has been reviewed by the Health Effects Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

References

  1. Barr B.C., Hyde D.M., Plopper C.G., Dungworth D.L. Distal airway remodeling in rats chronically exposed to ozone. Am. Rev. Respir. Dis. 1988;137:124–138. doi: 10.1164/ajrccm/137.4.924. [DOI] [PubMed] [Google Scholar]
  2. Barry B.E., Crapo J.D. Application of morphometric methods to study diffuse and focal injury in the lung caused by toxic agents. CRC Crit. Rev. Toxicol. 1985;14:1–32. doi: 10.3109/10408448509023763. [DOI] [PubMed] [Google Scholar]
  3. Barry B.E., Miller F.J., Crapo J.D. Effects of 0.12 and 0.25 parts per million ozone on the proximal alveolar region of juvenile and adult rats. Lab. Invest. 1985;53:692–704. [PubMed] [Google Scholar]
  4. Barry B.E., Mercer R.R., Miller F.J., Crapo J.D. Effects of inhalation of 0.25 ppm ozone on the terminal bronchioles of juvenile and adult rats. Exp. Lung Res. 1988;14:225–245. doi: 10.3109/01902148809115126. [DOI] [PubMed] [Google Scholar]
  5. Bates D.V., Bell G.M., Burnham C.D. Short-term effects of ozone on the lung. J. Appl. Physiol. 1972;32:176–181. doi: 10.1152/jappl.1972.32.2.176. [DOI] [PubMed] [Google Scholar]
  6. Beckett W.S., McDonnell W.F., Horstman D.H., House D. Role of the parasympathetic nerbous system in acute lung responses to ozone. J. Appl. Physiol. 1985;58:1879–1885. doi: 10.1152/jappl.1985.59.6.1879. [DOI] [PubMed] [Google Scholar]
  7. Bhatnagar R.S., Hussain M.Z., Sorensen K.R., Mustafa M.G., Uan Dohlen F.M., Lee S.D. Effect of ozone on lung collagen biosynthesis. In: Lee S.D., Mustafa M.G., Mehlman M.A., editors. International Symposium on the Biomedical Effects of Ozone and Related Photochemical Oxidants. Princeton Scientific Publishers, Incorporation; Princeton, NJ: 1983. pp. 311–321. [Google Scholar]
  8. Boorman G.A., Schwartz L.W., Dungworth D.L. Pulmonary effects of prolonged ozone insult in rats: Morphometric evaluation of the central acinus. Lab. Invest. 1980;43:108–115. [PubMed] [Google Scholar]
  9. Brody J.S. Cell to cell interactions in lung development. Pediatr. Pulmonol. 1985;1:542–548. [PubMed] [Google Scholar]
  10. Castleman W.L., Dungworth D.L., Schwartz L.W., Tyler W.S. Acute respiratory bronchiolitis: An ultrastructural and autoradiographic study of epithelial cell injury and renewal in rhesus monkeys exposed to ozone. Am. J. Pathol. 1980;98:811–840. [PMC free article] [PubMed] [Google Scholar]
  11. Chang L., Graham J.A., Miller F.J., Ospital J.J., Crapo J.D. Effects of subchronic inhalation of low concentrations of nitrogen dioxide. I. The proximal alveolar region of juvenile and adult rats. Toxicol. Appl. Pharmacol. 1986;83:46–61. doi: 10.1016/0041-008x(86)90321-2. [DOI] [PubMed] [Google Scholar]
  12. Chang L., Crapo J.D. Quantitative evaluation of minimal injuries. In: Gil J, editor. Models of Lung Disease: Microsocopy and Structural Models. Dekker; New York: 1990. pp. 597–640. [Google Scholar]
  13. Costa D.L., Katzman R.S., Lehmann J.R., Popenoe E.A., Drew R.T. A subchronic multiple dose ozone study in rats. In: Lee S.D., Mustafa M.G., Mehlman M.A., editors. International Symposium on the Biomedical Effects of Ozone and Related Photochemical Oxidants. Princeton Scientific Publishers; Princeton, NJ: 1983. pp. 369–393. [Google Scholar]
  14. Costa D.L., Tepper J.R., Devlin R., Madden M., Hatch G.E., Koren H., Boere J., Rombout P.J.A. Differential sensitivity to acute ozone: A study of lung dysfunction and inflammation in 3 rat strains. Toxicologist. 1992;12:614. [Google Scholar]
  15. Davies D.W., Walsh L.C., Hiteshew M.E., Menache M.G., Miller F.J., Grose E.C. Evaluating the toxicity of urban patterns of oxidant gases. I. An automated chronic gaseous animal inhalation exposure facility. J. Toxicol. Environ. Health. 1987;21:89–97. doi: 10.1080/15287398709531004. [DOI] [PubMed] [Google Scholar]
  16. Evans M.J., Stephens R.J., Freeman G. Cell renewal in the lungs of rats exposed to low levels of ozone. Exp. Mol. Pathol. 1976;24:70–83. doi: 10.1016/0014-4800(76)90058-7. [DOI] [PubMed] [Google Scholar]
  17. Evans M.J., Dekker N.P., Cabral-Anderson L.J., Shami S.G. Morphological basis of tolerance to ozone. Exp. Mol. Pathol. 1985;42:366–376. doi: 10.1016/0014-4800(85)90086-3. [DOI] [PubMed] [Google Scholar]
  18. Fine A., Goldstein R.H. The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J. Biol. Chem. 1987;262:3897–3902. [PubMed] [Google Scholar]
  19. Folinsbee L.J., Bedi J.F., Horvath S.M. Pulmonary function changes after 1 hr continuous heavy exercise in 0.21 ppm ozone. J. Appl. Physiol. 1984;37:984–988. doi: 10.1152/jappl.1984.57.4.984. [DOI] [PubMed] [Google Scholar]
  20. Freeman G., Stephen R.J., Coffin D.L., Stara J.F. Changes in dogs lungs after long term exposure to ozone light and electron microscopy. Arch. Environ. Health. 1973;26:209–216. doi: 10.1080/00039896.1973.10666258. [DOI] [PubMed] [Google Scholar]
  21. Fujinaka L.G., Hyde D.M., Plopper C.G., Tyler W.S., Dungworth D.L., Lollthi L.O. Respiratory bronchiolitis following long term ozone exposure in Bonnet monkeys: A morphometric study. Exp. Lung Res. 1985;8:167–190. doi: 10.3109/01902148509057520. [DOI] [PubMed] [Google Scholar]
  22. Horvath S.M., Gliner J.A., Folinsbee L.J. Adaptation to ozone: Duration of effect. Am. Rev. Respir. Dis. 1981;123:496–499. doi: 10.1164/arrd.1981.123.5.496. [DOI] [PubMed] [Google Scholar]
  23. Hurst D.J., Coffin D.L. Ozone effect on lysosomal hydrolases of alveolar macrophages in vitro. Arch. Intern. Med. 1971;127:1059–1063. [PubMed] [Google Scholar]
  24. Jaskot R.H., Grose E.C., Richards J.H., Stead A.G. Pulmonary biochemical changes in the rat following a chronic ozone exposure. Toxicologist. 1989;9:174. [Google Scholar]
  25. King R.J., Jones M.B., Minoo P. Regulation of lung cell proliferation by polypeptide growth factors. Am. J. Physiol. Lung Cell Mol. Physiol. 1990;258:L23–L38. doi: 10.1152/ajplung.1989.257.2.L23. [DOI] [PubMed] [Google Scholar]
  26. Last J.A., Greenberg D.B. Ozone-induced alterations in collagen metabolism of rat lungs. II. Long-term exposures. Toxicol. Appl. Pharmacol. 1980;55:108–114. doi: 10.1016/0041-008x(80)90226-4. [DOI] [PubMed] [Google Scholar]
  27. Last J.A., Gerriets J.E., Hyde D.M. Synergistic effects on rat lungs of mixtures of oxidant air pollutant (ozone or nitrogen dioxide) and respirable aerosols. Am. Rev. Respir. Dis. 1983;128:539–544. doi: 10.1164/arrd.1983.128.3.539. [DOI] [PubMed] [Google Scholar]
  28. Last J.A., Reiser K.M., Tyler W.S., Rucker R.B. Long-term consequences of exposure to ozone. I. Lung collagen content. Toxicol. Appl. Pharmacol. 1984;72:111–118. doi: 10.1016/0041-008x(84)90254-0. [DOI] [PubMed] [Google Scholar]
  29. Leslie C.L., McCormick-Shannon K., Cook J.L., Mason J.R. Macrophage stimulate DNA synthesis in rat alveolar type II cells. Am. Rev. Respir. Dis. 1986;132:1246–1252. doi: 10.1164/arrd.1985.132.6.1246. [DOI] [PubMed] [Google Scholar]
  30. Lioy D.J., Vollmuth T.A., Lippmann M. Persistence of peak flow decrement in children following ozone exposure exceeding the national ambient air quality standard. J. Air Pollut. Control Assoc. 1985;35:1068–1071. [PubMed] [Google Scholar]
  31. Lum H., Schwartz L.W., Dungworth D.L., Tyler W.S. A comparative study of cell renewal after exposure to ozone or oxygen: Response of terminal bronchiolar epithelium in the rat. Am. Rev. Respir. Dis. 1978;118:335–345. doi: 10.1164/arrd.1978.118.2.335. [DOI] [PubMed] [Google Scholar]
  32. McDonnell W.F., Horstman D.H., Hazucha M.J. Pulmonary effects of ozone exposure during exercise. J. Appl. Physiol. 1983;54:1345–1352. doi: 10.1152/jappl.1983.54.5.1345. [DOI] [PubMed] [Google Scholar]
  33. Mercer R.R., Anjilvel S., Miller F.J., Crapo J.D. Inhomogeneity of ventilatory unit volume and its effects on reactive gas uptake. J. Appl. Physiol. 1991;70:2193–2205. doi: 10.1152/jappl.1991.70.5.2193. [DOI] [PubMed] [Google Scholar]
  34. Mustafa M.G., Lee S.D. Pulmonary biomedical alterations resulting from ozone exposure. Ann. Occup. Hyg. 1976;19:17–26. doi: 10.1093/annhyg/19.1.17. [DOI] [PubMed] [Google Scholar]
  35. Norwood J., Crissman K., Slade R., Hatch G. The effect of chronic ozone exposure on bronchoalveolar lavage supernatant, cell and whole lung antioxidants. Toxicologists. 1989;9:177. [Google Scholar]
  36. Pelton R.W., Johnson M.D., Perkett E.A., Gold L.I., Moses H.L. Expression of transforming growth factor-β1, -β2 and -β3 mRNA and protein in the murine lung. Am. Rev. Respir. Cell Mol. Biol. 1991;5:522–530. doi: 10.1165/ajrcmb/5.6.522. [DOI] [PubMed] [Google Scholar]
  37. Pinkerton K.E., Brody A.R., Miller F.J., Crapo J.D. Exposure to low levels of ozone results in enhanced pulmonary retention of inhaled asbestos fibers. Am. Rev. Respir. Dis. 1989;140:1075–1081. doi: 10.1164/ajrccm/140.4.1075. [DOI] [PubMed] [Google Scholar]
  38. Plopper C.G., Chow C.K., Dungworth P.L., Brammer M., Nemeth T.J. Effect of low levels of ozone on rat lung. II. Morphologic responses during recovery and re-exposure. Exp. Mol. Pathol. 1978;29:400–411. doi: 10.1016/0014-4800(78)90081-3. [DOI] [PubMed] [Google Scholar]
  39. Plopper C.G., Chow C.K., Dungworth D.L., Tyler W.S. Pulmonary alterations in rats exposed to 0.2 and 0.1 ppm ozone: A correlated morphological and biochemical study. Arch. Environ. Health. 1979;34:390–395. doi: 10.1080/00039896.1979.10667438. [DOI] [PubMed] [Google Scholar]
  40. Plopper C.G., Harkema J.R., Last J.A., Pinkerton K.E., Tyler W.S., St. George J.A., Wong V.J., Nishio S.J., Weir A.S., Dungworth D.L., Barry B.E., Hyde D.M. The respiratory system of nonhuman primates responds more to ambient concentrations of ozone than does that of rats. In: Berglund R.L., Lawson D.R., McKee D.J., editors. Tropospheric Ozone and the Environment. Air and Waste Management Association; Pittsburgh, PA: 1991. pp. 137–150. [Google Scholar]
  41. Raub J.A., Miller F.J., Graham J.A. Effects of low level ozone in adult and neonatal rats. In: Lee S.D., Mastafa M.G., Mehlman M.A., editors. International Symposium on Biomedical Effects of Ozone and Related Photochemical Oxidants. Princeton Scientific Publishers; Princeton, NJ: 1982. pp. 363–367. [Google Scholar]
  42. Schwartz W., Dungworth D.L., Mustafa M.G., Tarkington B.K., Tyler W.S. Pulmonary responses of rats to ambient levels of ozone: Effects of 7 day intermittent or continuous exposures. Lab. Invest. 1976;34:565–578. [PubMed] [Google Scholar]
  43. Selgrade M.J.K., Daniels M.J., Grose E.C. Acute, subchronic, and chronic exposure to a simulated urban profile of ozone: Effects on extrapulmonary natural killer cell activity and lymphocyte mitogenic responses. Inhalation Toxicol. 1990;2:375–389. [Google Scholar]
  44. Smith B.T., Post M. Fibroblast pneumocyte factor. Am. J. Physiol. Lung Cell. Mol. Physiol. 1989;257:L174–L178. doi: 10.1152/ajplung.1989.257.4.L174. [DOI] [PubMed] [Google Scholar]
  45. Spektor D.M., Lippmann M., Lioy P.L., Thurston D., Citak K., James D.J., Bock N., Seizer F.E., Hayes C. Effects of ambient ozone on respiratory function in active normal children. Am. Rev. Respir. Dis. 1988;137:313–320. doi: 10.1164/ajrccm/137.2.313. [DOI] [PubMed] [Google Scholar]
  46. Stephens R.J., Sloan M.T., Evans M.J., Freeman G. Alveolar type I cell response to exposure to 0.5 ppm O3 for short periods. Exp. Mol. Pathol. 1974;20:11–23. doi: 10.1016/0014-4800(74)90039-2. [DOI] [PubMed] [Google Scholar]
  47. Tepper J.S., Costa D.L., Lehmann J.R., Weber M.F., Hatch G.E. Unattenuated structural and biochemical alterations in the rat lung during functional adaptation to ozone. Am. Rev. Respir. Dis. 1989;140:493–501. doi: 10.1164/ajrccm/140.2.493. [DOI] [PubMed] [Google Scholar]
  48. Tepper J.S., Wiester M.J., Weber M.F., Fitzgerald S., Costa D.L. Chronic exposure to a simulated urban profile of ozone alters ventilatory responses to carbon dioxide challenge in rats. Fundam. Appl. Toxicol. 1991;17:52–60. doi: 10.1016/0272-0590(91)90238-y. [DOI] [PubMed] [Google Scholar]
  49. Tyler W.S., Tyler N.K., Last J.A., Barstow T.J., Magliano D.J., Hinds D.M. Effects of ozone on lung and somatic growth: Pair fed rats after ozone exposure and recovery periods. Toxicology. 1987;46:1–20. doi: 10.1016/0300-483x(87)90133-8. [DOI] [PubMed] [Google Scholar]
  50. Warren D.L., Last J.A. Synergistic interactions of ozone and respirable aerosols on rat lungs. III. Ozone and sulfuric acid aerosol. Toxicol. Appl. Pharmacol. 1987;88:203–216. doi: 10.1016/0041-008x(87)90006-8. [DOI] [PubMed] [Google Scholar]
  51. Wright E.S., Kehrer J.P., White D.M., Smiler K.L. Effects of chronic exposure to ozone on collagen in rat lung. Toxicol. Appl. Pharmacol. 1988;92:445–452. doi: 10.1016/0041-008x(88)90184-6. [DOI] [PubMed] [Google Scholar]
  52. Zimmermann B., Barrach H., Merker H., Hinz N. Basement membrane formation and lung cell differentiation in vitro. Eur. J. Cell. Biol. 1985;36:66–73. [PubMed] [Google Scholar]

Articles from Toxicology and Applied Pharmacology are provided here courtesy of Elsevier

RESOURCES