Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Nov 30;24(2):113–134. doi: 10.1016/0009-9120(91)90421-A

Central nervous system myelin: structure, function, and pathology

Charles M Deber a,b,*, Steven J Reynolds a,b
PMCID: PMC7130177  PMID: 1710177

Abstract

Multiple sclerosis (MS) and a number of related distinctive diseases are characterized by the active degradation of central nervous system (CNS) myelin, an axonal sheath comprised essentially of proteins and lipids. These demyelinating diseases appear to arise from complex interactions of genetic, immunological, infective, and biochemical mechanisms. While circumstances of MS etiology remain hypothetical, one persistent theme involves recognition by the immune system of myelin-specific antigens derived from myelin basic protein (MBP), the most abundant extrinsic myelin membrane protein, and/or another equally susceptible myelin protein or lipid component. Knowledge of the biochemical and physical—chemical properties of myelin proteins and lipids, particularly their composition, organization, structure, and accessibility with respect to the compacted myelin multilayers, thus becomes central to the understanding of how and why these antigens become selected during the development of MS. This review focuses on current understanding of the molecular basis underlying demyelinating disease as it may relate to the impact of the various protein and lipid components on myelin morphology; the precise molecular architecture of this membrane as dictated by protein—lipid and lipid—lipid interactions; and the relationship, if any, between the protein/lipid components and the destruction of myelin in pathological situations.

Keywords: central nervous system, encephalitogenic basic proteins, membrane proteins, multiple sclerosis, myelin proteins, nuclear magnetic resonance, protein conformation

References

  • 1.Blackwood W, Corsellis JAN, editors. Greenfield's neuropathology. Edward Arnold Ltd.; 1976. [Google Scholar]
  • 2.Raine CS. The neuropathology of myelin diseases. In: Morell P., editor. Myelin. Plenum Press; London: 1984. pp. 259–310. [Google Scholar]
  • 3.McFarlin DE, McFarland HF. Multiple sclerosis (first of two parts) N Engl J Med. 1982;307:1183–1251. doi: 10.1056/NEJM198211043071905. [DOI] [PubMed] [Google Scholar]
  • 4.McDonald WI. Multiple sclerosis: the present position. Acta Neurol Scand. 1983;68:65–76. doi: 10.1111/j.1600-0404.1983.tb04819.x. [DOI] [PubMed] [Google Scholar]
  • 5.McDonald WI, Silberberg DH, editors. Multiple sclerosis. Butterworths; New York: 1986. [Google Scholar]
  • 6.Adams CWM. The onset and progression of the lesion in multiple sclerosis. J Neurol Sci. 1975;25:165–182. doi: 10.1016/0022-510x(75)90138-0. [DOI] [PubMed] [Google Scholar]
  • 7.Ebers GC, Vinuela FV, Feasby T, Bass B. Multifocal CT enhancement in MS. Neurology. 1984;34:341–346. doi: 10.1212/wnl.34.3.341. [DOI] [PubMed] [Google Scholar]
  • 8.Raine CS, Powers JM, Suzuki K. Conformation of “paramyxovirus-like” intranuclear inclusions. Vol. 30. 1974. Acute multiple sclerosis; pp. 39–46. (Arch Neurol). [DOI] [PubMed] [Google Scholar]
  • 9.Adams CWM. Pathology of multiple sclerosis: progression of the lesion. Br Med Bull. 1977;33:15–20. doi: 10.1093/oxfordjournals.bmb.a071388. [DOI] [PubMed] [Google Scholar]
  • 10.Traugott U, Scheinberg LC, Raine CS. On the presence of Ia-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J Neuroimmunol. 1985;8:1–14. doi: 10.1016/s0165-5728(85)80043-6. [DOI] [PubMed] [Google Scholar]
  • 11.Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Heiner HL. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol. 1986;19:578–587. doi: 10.1002/ana.410190610. [DOI] [PubMed] [Google Scholar]
  • 12.Halonen T, Kilpelainen H, Pitkanen A, Riekkinen PJ. A follow-up study. Vol. 79. 1987. Lysosomal hydrolases in cerebrospinal fluid of multiple sclerosis patients; pp. 267–274. (J Neurol Sci). [DOI] [PubMed] [Google Scholar]
  • 13.Bamborschke S, Heiss W-D. Cerebrospinal fluid and peripheral blood leukocyte subsets in acute inflammation of the CNS. J Neurol Sci. 1987;79:1–12. doi: 10.1016/0022-510x(87)90254-1. [DOI] [PubMed] [Google Scholar]
  • 14.Lumsden CE. The immunogenesis of multiple sclerosis plaque. Brain Res. 1971;28:365–390. doi: 10.1016/0006-8993(71)90052-7. [DOI] [PubMed] [Google Scholar]
  • 15.Prineas JW, Kwon EE, Cho E-S, Scharer LR. The distribution of myelin associated glycoprotein and myelin basic protein in actively demyelinating multiple sclerosis lesions. J Neuroimmunol. 1984;6:251–264. doi: 10.1016/0165-5728(84)90012-2. [DOI] [PubMed] [Google Scholar]
  • 16.Möller JR, Yanagisawa K, Brady RO, Tourtellotte WW, Quarles RH. Myelin-associated glycoprotein in multiple sclerosis lesions: a quantitative and qualitative analysis. Ann Neurol. 1987;22:469–474. doi: 10.1002/ana.410220405. [DOI] [PubMed] [Google Scholar]
  • 17.Suzuki K, Andrews J, Waltz J, Terry R. Ultrastructural studies of multiple sclerosis. Lab Invest. 1969;20:444–454. [PubMed] [Google Scholar]
  • 18.Prineas JW, Kwon EE, Sternberber NH, Lennon VA. Remyelination in multiple sclerosis. Ann NY Acad Sci. 1984;436:11–32. doi: 10.1111/j.1749-6632.1984.tb14773.x. [DOI] [PubMed] [Google Scholar]
  • 19.Dorfman SH, Fry JM, Silberberg DH. Antiserum induced myelination inhibition in vitro independent of the cytolytic effects of the complement system. Brain Res. 1979;177:105–114. doi: 10.1016/0006-8993(79)90921-1. [DOI] [PubMed] [Google Scholar]
  • 20.Silberberg DH. Pathogenesis of demyelination. In: McDonald WI, Silberberg DH, editors. Multiple sclerosis. Butterworths; Boston: 1986. pp. 99–111. [Google Scholar]
  • 21.Gonzalez-Scarano F, Spielman RS, Nathanson N. Epidemiology. In: McDonald WI, Silberberg DH, editors. Multiple sclerosis. Butterworths; Boston: 1986. pp. 37–55. [Google Scholar]
  • 22.Dean G, Kurtzke JF. On the risk of multiple sclerosis according to age at immigration to South Africa. Br Med J. 1971;3:725–729. doi: 10.1136/bmj.3.5777.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kurtzke JF, Hyllested K. Multiple sclerosis: an epidemic disease in the Faroes. Trans Am Neurol Assoc. 1975;100:213–215. [PubMed] [Google Scholar]
  • 24.Nathanson N, Miller A. Epidemiology of multiple sclerosis: critique of the evidence for a virus etiology. Am J Epidemiol. 1978;107:451–461. doi: 10.1093/oxfordjournals.aje.a112564. [DOI] [PubMed] [Google Scholar]
  • 25.Kurtzke JF, Gudmundsson KR, Bergman S. Multiple sclerosis in Iceland. I. Evidence of post war epidemic. Neurology. 1982;32:143–150. doi: 10.1212/wnl.32.2.143. [DOI] [PubMed] [Google Scholar]
  • 26.Poskanzer DC, Prenney LB, Seridan JL, Kundy JY. Multiple sclerosis in the Orkney and Shetland Islands. I. Epidemiology, clinical factors, and methodology. J Epidemiol Community Health. 1980;34:229–239. doi: 10.1136/jech.34.4.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Cook SD, Cromanty JI, Tapp W, Poskanzer D, Walder JD, Dowling PC. Declining incidence of multiple sclerosis in the Orkney Islands. Neurology. 1985;35:545–551. doi: 10.1212/wnl.35.4.545. [DOI] [PubMed] [Google Scholar]
  • 28.Weiner HL, Hauser SL. Neuroimmunology I: immunoregulation in neurological disease. Ann Neurol. 1982;11:437–449. doi: 10.1002/ana.410110502. [DOI] [PubMed] [Google Scholar]
  • 29.Waksman BH. Immunity and the nervous system: basic tenets. Ann Neurol. 1983;13:587–591. doi: 10.1002/ana.410130602. [DOI] [PubMed] [Google Scholar]
  • 30.Doniach D, Bottazzo GF, Khoury EL. Prospects in human autoimmune thyroiditis. In: Pinchera A, Doniach D, Fenzi GF, Bascheri L, editors. Autoimmune aspects of endocrine disorders. Academic Press; Boston: 1980. pp. 25–38. [Google Scholar]
  • 31.Burman KD, Baker JR., Jr Immune mechanisms in Grave's disease. Endocr Rev. 1985;6:183–201. doi: 10.1210/edrv-6-2-183. [DOI] [PubMed] [Google Scholar]
  • 32.Roitt I, Brostoff J, Male D. Gower Medical; London: 1985. Immunology. [Google Scholar]
  • 33.Drachman DB. Myasthenia gravis. Part 1. N Engl J Med. 1978;298:136–142. doi: 10.1056/NEJM197801192980305. [DOI] [PubMed] [Google Scholar]
  • 34.Hohlfeld R, Toyka KV, Tzartos SJ, Carson W, Conti-Tronconi BM. Vol. 84. 1987. Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor α subunit; pp. 5379–5383. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lampert PW. Autoimmune and virus-induced demyelinating diseases. Am J Pathol. 1978;91:175–208. [PMC free article] [PubMed] [Google Scholar]
  • 36.Cook SD, Dowling PC. Multiple sclerosis and viruses: an overview. Neurology. 1980;30:80–91. doi: 10.1212/wnl.30.7_part_2.80. [DOI] [PubMed] [Google Scholar]
  • 37.Johnson RT, McArthur JC. Myelopathies and retroviral infections. Ann Neurol. 1987;21:113–116. doi: 10.1002/ana.410210202. [DOI] [PubMed] [Google Scholar]
  • 38.Narayan O, Cork LC. Lentiviral diseases of sheep and goats: chronic pneumonia, leukoencephalomyelitis and arthritis. Rev Infect Dis. 1985;7:89–98. doi: 10.1093/clinids/7.1.89. [DOI] [PubMed] [Google Scholar]
  • 39.Stowring L, Haase AT, Petursson G. Detection of visna virus antigens and RNA in glial cells in foci of demyelination. Virology. 1985;141:311–318. doi: 10.1016/0042-6822(85)90264-8. [DOI] [PubMed] [Google Scholar]
  • 40.Gudnadottir M, Helgadottir H, Bjarnason O, Jonsdottir K. Virus isolated from the brain of a patient with multiple sclerosis. Exp Neurol. 1964;9:85–95. doi: 10.1016/0014-4886(64)90008-1. [DOI] [PubMed] [Google Scholar]
  • 41.Burks JS, De Vald BL, Jankovsky LD, Gerdes JC. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209:993–994. doi: 10.1126/science.7403860. [DOI] [PubMed] [Google Scholar]
  • 42.Suzumura A, Lavi E, Weiss SR, Silberberg DH. Coronavirus infection induces H-12 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
  • 43.Norrby E, Link H, Olsson J-E. Comparison of antibody titers in cerebrospinal fluid and serum. Vol. 30. 1974. Measles virus antibodies in multiple sclerosis; pp. 285–292. (Arch Neurol). [DOI] [PubMed] [Google Scholar]
  • 44.Vandvik B, Degre M. Measles virus antibodies in serum and cerebrospinal fluid in patients with multiple sclerosis and other neurological disorders, with special reference to measles antibody synthesis within the central nervous system. J Neurol Sci. 1975;24:201–219. doi: 10.1016/0022-510x(75)90233-6. [DOI] [PubMed] [Google Scholar]
  • 45.Dal Canto MC, Lipton HL. An ultrastructural study. Vol. 33. 1975. Primary demyelination in Theiler's virus infection; pp. 626–637. (Lab Invest). [PubMed] [Google Scholar]
  • 46.Rodriguez M, Leibowitz JL, Lampert PW. Persistent infection of oligodendrocytes in Theiler's virus-induced encephalomyelitis. Ann Neurol. 1983;13:426–433. doi: 10.1002/ana.410130409. [DOI] [PubMed] [Google Scholar]
  • 47.Koprowski H, DeFreitas EC, Harper ME. Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature. 1985;318:154–160. doi: 10.1038/318154a0. [DOI] [PubMed] [Google Scholar]
  • 48.Osame M, Matsumoto M, Usuku K. Chronic progressive myelinopathy associated with elevated antibodies to human T-lymphotropic virus type I and adult T-cell leukemia-like cells. Ann Neurol. 1987;21:117–122. doi: 10.1002/ana.410210203. [DOI] [PubMed] [Google Scholar]
  • 49.Vernant JC, Maurs L, Gessain A. Endemic tropical spastic paraparesis associated with human T-lymphotropic virus type I: a clinical seroepidemiological study of 25 cases. Ann Neurol. 1987;21:123–130. doi: 10.1002/ana.410210204. [DOI] [PubMed] [Google Scholar]
  • 50.Snider WD, Simpson DM, Nielsen S, Gold JWM, Metroka CE, Posner JB. Neurological complications of acquired immune deficiency syndrome analysis of 50 patients. Ann Neurol. 1983;14:403–418. doi: 10.1002/ana.410140404. [DOI] [PubMed] [Google Scholar]
  • 51.Johnson RT, McArthur JC. AIDS and the brain. Trends Neurol Sci. 1986;9:91–94. [Google Scholar]
  • 52.Cosby SL, McQuaid S, Taylor MJ. Examination of eight cases of multiple sclerosis and 56 neurological and non-neurological controls for genomic sequences of measles virus, canine distemper virus, simian virus 5 and rubella virus. J Gen Virol. 1989;70:2027–2036. doi: 10.1099/0022-1317-70-8-2027. [DOI] [PubMed] [Google Scholar]
  • 53.Oldstone MBA. Molecular mimicry and autoimmune disease. Cell. 1987;50:819–820. doi: 10.1016/0092-8674(87)90507-1. [DOI] [PubMed] [Google Scholar]
  • 54.Jahnke U, Fischer EH, Alvord EC., Jr Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science. 1985;229:282–284. doi: 10.1126/science.2409602. [DOI] [PubMed] [Google Scholar]
  • 55.Fujinami RS, Oldstone MBA. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985;230:1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  • 56.Spitler LE, von Muller CM, Fudenberg HH, Eylar EH. Dissociation of cellular immunity to brain protein and disease production. Vol. 136. 1972. Experimental allergic encephalitis; pp. 156–174. (J Exp Med). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Maugh TH. The EAE model: a tentative connection to multiple sclerosis. Science. 1977;195:969–971. doi: 10.1126/science.195.4282.969. [DOI] [PubMed] [Google Scholar]
  • 58.Sires LR, Hruby S, Alvord EC., Jr. Species restrictions of a monoclonal antibody reacting with residues 130 to 137 in encephalitogenic myelin basic protein. Science. 1981;214:87–89. doi: 10.1126/science.6169147. [DOI] [PubMed] [Google Scholar]
  • 59.Lazarus KJ, Hashim GA, Varitek VA, Jr., Paterson PY, Day ED. A rabbit B cell determinant for a conserved portion of myelin basic protein, rabbit encephalitogenic sequence 65–74. J Immunol. 1983;131:275–281. [PubMed] [Google Scholar]
  • 60.Fritz RB, Chou C-HJ. Epitopes of peptide 43–99 of guinea pig myelin basic protein: localization with monoclonal antibodies. J Immunol. 1983;130:2180–2182. [PubMed] [Google Scholar]
  • 61.Shaw S-Y, Lauresen RA, Lees MB. Analogous amino acid sequences in myelin proteolipid and viral proteins. FEBS Lett. 1986;207:266–270. doi: 10.1016/0014-5793(86)81502-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Kasai N, Pachner AR, Yu RK. Anti-glycolipid antibodies and their immune complexes in multiple sclerosis. J Neurol Sci. 1986;75:33–42. doi: 10.1016/0022-510x(86)90048-1. [DOI] [PubMed] [Google Scholar]
  • 63.Waksman BH. Mechanisms in multiple sclerosis. Nature. 1985;318:104–105. doi: 10.1038/318104a0. [DOI] [PubMed] [Google Scholar]
  • 64.Morell P, editor. Myelin. Plenum Press; New York: 1977. [Google Scholar]
  • 65.Morell P, editor. Myelin. Plenum Press; New York: 1984. [Google Scholar]
  • 66.Quinn PJ, Gounaris K, Sen A, Williams WP. In: Biochemistry and metabolism of lipids. Wintermans JFGM, Kuiper PJC, editors. Elsevier Biomedical; New York: 1982. [Google Scholar]
  • 67.Gounaris K, Brain APR, Quinn PJ, Williams WP. Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes. FEBS Lett. 1983;153:47–52. [Google Scholar]
  • 68.Wrigglesworth JM, Packer L, Branton D. Organization of mitochondrial structure as revealed by freeze-etching. Biochim Biophys Acta. 1970;205:125–135. doi: 10.1016/0005-2728(70)90243-4. [DOI] [PubMed] [Google Scholar]
  • 69.Palmer JM, Hall DO. The mitochondrial membrane system. Prog Biophys Biophys Chem. 1972;24:125–176. doi: 10.1016/0079-6107(72)90006-5. [DOI] [PubMed] [Google Scholar]
  • 70.Raker E. Van Nostrand Reinhold; Amsterdam: 1970. Membranes of mitochondria and chloroplasts. (American Chemical Society Monograph 165). [Google Scholar]
  • 71.Wallace BA. Comparison of bacteriorhodopsin and rhodopsin molecular structure. Methods Enzymol. 1982;88:447–462. [Google Scholar]
  • 72.Blackwood W. Normal structure and general pathology of the nerve cell and neuroglia. In: Blackwood W, Corsellis JAN, editors. Greenfield's neuropathology. Edward Arnold Ltd.; New York: 1976. pp. 1–42. [Google Scholar]
  • 73.Davison AW, Peters A. Biochemistry of the myelin sheath. In: Davison AW, Peters A, editors. Myelination. Thomas; London: 1970. pp. 80–161. [Google Scholar]
  • 74.Raine CS. Morphological aspects of myelin and myelination. In: Morell P, editor. Myelin. Plenum Press; Springfield, IL: 1977. pp. 1–41. [Google Scholar]
  • 75.Caley DW, Butler AB. Formation of central and peripheral myelin sheaths in the rat: an electron microscopic study. Am J Anat. 1974;140:339–346. doi: 10.1002/aja.1001400303. [DOI] [PubMed] [Google Scholar]
  • 76.Peters A. Observations on the connexions between myelin sheaths and glial cells in the optic nerve of young rats. J Anat. 1964;98:125–136. [PMC free article] [PubMed] [Google Scholar]
  • 77.Bunge RP, Glass P. Some observations on myelin-glial relationships and on the etiology of the cerebrospinal fluid exchange lesion. Ann NY Acad Sci. 1965;122:15–22. doi: 10.1111/j.1749-6632.1965.tb20188.x. [DOI] [PubMed] [Google Scholar]
  • 78.Blakemore WF, Crang AJ, Evans RJ. The effect of chemical injury on oligodendrocytes. In: Mims CA, Cuzner ML, Kelly RE, editors. Viruses and demyelinating diseases. Academic Press; New York: 1983. pp. 167–190. [Google Scholar]
  • 79.Sato S, Fujita N, Kurihara T, Kuwano R, Sakimura K, Takahashi Y, Miyatake T. cDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem Biophys Res Commun. 1989;163:1473–1480. doi: 10.1016/0006-291x(89)91145-5. [DOI] [PubMed] [Google Scholar]
  • 80.Yoshida K, Kohsaka S, Nii S. Subcultured astrocytes suppress the proliferation of neuroblasts in vitro. Neurosci Lett. 1986;70:34–39. doi: 10.1016/0304-3940(86)90433-7. [DOI] [PubMed] [Google Scholar]
  • 81.Liuzzi FJ, Lasek RJ. Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science. 1987;237:642–645. doi: 10.1126/science.3603044. [DOI] [PubMed] [Google Scholar]
  • 82.Norton WT. Isolation and characterization of myelin. In: Morell P, editor. Myelin. Plenum Press; London: 1977. pp. 161–190. [Google Scholar]
  • 83.Rumsby MG. Organization and structure in central-nerve myelin. Biochem Soc Trans. 1978;6:448–462. doi: 10.1042/bst0060448. [DOI] [PubMed] [Google Scholar]
  • 84.Boggs JM, Moscarello MA, Papahadjopoulos D. Structural organization of myelin — role of lipid-protein interactions determined in model systems. In: Jost P, Griffith OH, editors. Vol. 2. J. Wiley and Sons; New York: 1982. pp. 1–51. (Lipid—protein interactions). [Google Scholar]
  • 85.Boggs JM, Moscarello MA. Structural organization of the human myelin membrane. Biochim Biophys Acta. 1978;515:1–21. doi: 10.1016/0304-4157(78)90006-0. [DOI] [PubMed] [Google Scholar]
  • 86.Carnegie PR, Moore WJ. Myelin basic protein. In: Bradshaw RA, Schneider DM, editors. Proteins of the nervous system. Raven Press; New York: 1980. pp. 119–143. [Google Scholar]
  • 87.Harris R, Findlay JBC. Use of chemical probes and bifunctional crosslinking reagents. Vol. 732. 1983. Investigation of the organisation of the major proteins in bovine myelin membranes; pp. 75–82. (Biochim Biophys Acta). [DOI] [PubMed] [Google Scholar]
  • 88.Eylar RH, Brostoff S, Hashim G, Caccam J, Burnett P. Basic A1 protein of the myelin membrane. J Biol Chem. 1971;246:5770–5784. [PubMed] [Google Scholar]
  • 89.Carnegie PR. Amino acid sequence of the encephalitogenic protein of human myelin. Biochem J. 1971;123:57–67. doi: 10.1042/bj1230057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Martenson RE, Deibler GE, Kies MW. Comparison of amino-acid sequences of hypothalamic peptide, brain-specific histone and myelin basic protein. Nature. 1971;234:87–89. doi: 10.1038/newbio234087a0. [DOI] [PubMed] [Google Scholar]
  • 91.Martenson RE. Prediction of the secondary structure of myelin basic protein. J Neurochem. 1981;36:1543–1560. doi: 10.1111/j.1471-4159.1981.tb00598.x. [DOI] [PubMed] [Google Scholar]
  • 92.Small DH, Carnegie PR. In vivo methylation of an arginine in chicken myelin basic protein. J Neurochem. 1981;38:184–190. doi: 10.1111/j.1471-4159.1982.tb10870.x. [DOI] [PubMed] [Google Scholar]
  • 93.Carnegie PR, Kemp BE, Dunkley PR, Murray AW. Phosphorylation of myelin basic protein by an adenosine 3′:5′-cyclic monophosphate-dependent protein kinase. Biochem J. 1973;135:569–572. doi: 10.1042/bj1350569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Miyamoto E, Kakiuchi S. In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3′:5′-monophosphate-dependent protein kinase in brain. J Biol Chem. 1974;249:2769–2777. [PubMed] [Google Scholar]
  • 95.Steck AJ, Appel SH. Phosphorylation of myelin basic protein. J Biol Chem. 1974;249:5416–5420. [PubMed] [Google Scholar]
  • 96.Turner RS, Chou C-HJ, Kibler RF, Kuo JF. Basic protein in brain myelin is phosphorylated by endogenous phospholipid-sensitive Ca2+-dependent protein kinase. J Neurochem. 1982;39:1397–1404. doi: 10.1111/j.1471-4159.1982.tb12583.x. [DOI] [PubMed] [Google Scholar]
  • 97.Kishimoto A, Nishiyama K, Nakanishi H. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem. 1985;260:12492–12499. [PubMed] [Google Scholar]
  • 98.Ulmer JB, Braun PE. Chloroform markedly stimulates the phosphorylation of myelin basic proteins. Biochem Biophys Res Commun. 1987;146:1084–1088. doi: 10.1016/0006-291x(87)90758-3. [DOI] [PubMed] [Google Scholar]
  • 99.Chan K-FJ, Moscarello MA, Stoner GL, Webster HdeF. A novel fragmentation of human myelin basic protein: identification of phosphorylated domains. Biochem Biophys Res Commun. 1987;144:1287–1295. doi: 10.1016/0006-291x(87)91450-1. [DOI] [PubMed] [Google Scholar]
  • 100.Hagopian A, Westall FC, Whitehead JS, Eylar EH. Identification of the receptor sequence. Vol. 246. 1971. Glycosylation of the A1 protein from myelin by a polypeptide N-acetylgalactosaminyltransferase; pp. 2519–2523. (J Biol Chem). [PubMed] [Google Scholar]
  • 101.Cruz TF, Moscarello MA. Identification of the major sites of enzymic glycosylation of myelin basic protein. Biochim Biophys Acta. 1983;760:403–410. doi: 10.1016/0304-4165(83)90381-1. [DOI] [PubMed] [Google Scholar]
  • 102.Brostoff S, Eylar EH. Vol. 68. 1971. Localization of methylated arginine in the A1 protein from myelin; pp. 765–769. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Chou FC-H, Chou C-HJ, Shapira R, Kibler RF. Basis of microheterogeneity of myelin basic protein. J Biol Chem. 1976;251:2671–2679. [PubMed] [Google Scholar]
  • 104.Martenson RE, Law JM, Deibler GE. Identification of multiple in vivo phosphorylation sites in rabbit myelin basic protein. J Biol Chem. 1983;254:930–937. [PubMed] [Google Scholar]
  • 105.Deber CM, Cheifetz S, Moscarello MA. Microheterogeneity of bovine myelin basic protein studied by nuclear magnetic resonance spectroscopy. Biopolymers. 1983;22:377–380. doi: 10.1002/bip.360220148. [DOI] [PubMed] [Google Scholar]
  • 106.Smyth DS, Utsumi S. Structure at the hinge region in rabbit immunoglobulin-G. Nature. 1967;216:332–335. doi: 10.1038/216332a0. [DOI] [PubMed] [Google Scholar]
  • 107.Caamano CA, Zand R. Homologous sequences in cholera toxin A and B subunits to peptide domains in myelin basic protein. FEBS Lett. 1989;252:88–90. doi: 10.1016/0014-5793(89)80894-4. [DOI] [PubMed] [Google Scholar]
  • 108.Martenson RE, Deibler GE, Kies MW. Microheterogeneity of guinea pig myelin basic protein. J Biol Chem. 1969;244:4261–4263. [PubMed] [Google Scholar]
  • 109.Deibler GE, Martenson RE, Kramer AJ, Kies MW. The contribution of phosphorylation and loss of COOH-terminal arginine to the microheterogeneity of myelin basic protein. J Biol Chem. 1975;250:7931–7938. [PubMed] [Google Scholar]
  • 110.Wood DD, Moscarello MA. The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem. 1989;264:5121–5127. [PubMed] [Google Scholar]
  • 111.Martenson RE, Kramer AJ, Deibler GE. Microheterogeneity and phosphate content of myelin basic protein from ‘freeze-blown’ guinea-pig brains. J Neurochem. 1976;27:1529–1531. doi: 10.1111/j.1471-4159.1976.tb02639.x. [DOI] [PubMed] [Google Scholar]
  • 112.Wu N-C, Ahmad J. Calcium- and cyclic AMP-regulated protein kinases of bovine central nervous system myelin. Biochem J. 1984;218:923–932. doi: 10.1042/bj2180923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Endo T, Hidaka H. Ca2+-Calmodulin dependent phosphorylation of myelin isolated from rabbit brain. Biochem Biophys Res Commun. 1980;97:553–558. doi: 10.1016/0006-291x(80)90299-5. [DOI] [PubMed] [Google Scholar]
  • 114.Chan K-FJ. Partial purification and characterization of a ganglioside-inhibited protein kinase in brain. Vol. 263. 1988. Ganglioside-modulated protein phosphorylation; pp. 568–574. (J Biol Chem). [PubMed] [Google Scholar]
  • 115.Yang S-D, Liu J-S, Fong Y-L, Yu J-S. Endogenous brain protein phosphatases in the brain myelin. J Neurochem. 1987;48:160–166. doi: 10.1111/j.1471-4159.1987.tb13141.x. [DOI] [PubMed] [Google Scholar]
  • 116.Vandenheede JR, Van Lint J, Vanden Abeele C, Merlevede W. Interaction of myelin basic protein with the different components of the ATP, Mg-dependent protein phosphatase system. FEBS Lett. 1987;211:190–194. doi: 10.1016/0014-5793(87)81434-5. [DOI] [PubMed] [Google Scholar]
  • 117.Ulmer JB, Braun PE. In vivo phosphorylation of myelin basic proteins in developing mouse brain: evidence that phosphorylation is an early event in myelin formation. Dev Neurosci. 1984;6:345–355. doi: 10.1159/000112361. [DOI] [PubMed] [Google Scholar]
  • 118.Ulmer JB, Braun PE. In vivo phosphorylation of myelin basic proteins: age related differences in 32P incorporation. Dev Biol. 1986;117:493–501. doi: 10.1016/0012-1606(86)90316-7. [DOI] [PubMed] [Google Scholar]
  • 119.Schulz P, Cruz TF, Moscarello MA. Endogenous phosphorylation of basic protein of varying degrees of compaction. Biochemistry. 1988;27:7793–7799. doi: 10.1021/bi00420a031. [DOI] [PubMed] [Google Scholar]
  • 120.Vartanian T, Szuchet S, Dawson G, Campagnoni AT. Oligodendrocyte adhesion activates protein kinase C-mediated phosphorylation of myelin basic protein. Science. 1986;234:1395–1398. doi: 10.1126/science.2431483. [DOI] [PubMed] [Google Scholar]
  • 121.Su HD, Kemp BE, Turner RS, Kuo JF. Synthetic myelin basic protein peptide analogs are specific inhibitors of phospholipid/calcium-dependent protein kinase (protein kinase C) Biochem Biophys Res Commun. 1986;134:78–84. doi: 10.1016/0006-291x(86)90529-2. [DOI] [PubMed] [Google Scholar]
  • 122.Deshmukh DS, Kuizon S, Brockerhoff H. Mutual stimulation by phosphatidylinositol-4-phosphate and myelin basic protein of their phosphorylation by the kinases solubilized from rat brain myelin. Life Sci. 1984;34:259–264. doi: 10.1016/0024-3205(84)90597-6. [DOI] [PubMed] [Google Scholar]
  • 123.Chanderkar LP, Paik WK, Kim S. Studies on myelin basic protein methylation during mouse brain development. Biochem J. 1986;240:471–479. doi: 10.1042/bj2400471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Jacobson W, Grandy G, Sidman RL. Experimental subacute combined degeneration of the cord in mice. J Pathol. 1973;109:8. (abstr.) [PubMed] [Google Scholar]
  • 125.Young PR, Vacante DA, Waickus CM. Mechanism of the interaction between myelin basic protein and the myelin membrane: the role of arginine methylation. Biochem Biophys Res Commun. 1987;145:1112–1118. doi: 10.1016/0006-291x(87)91552-x. [DOI] [PubMed] [Google Scholar]
  • 126.Young JD, Tsuchiya D, Sandlin DE, Holroyde MJ. Enzymic O-glycosylation of synthetic peptides from sequences in basic myelin protein. Biochemistry. 1979;18:4444–4448. doi: 10.1021/bi00587a026. [DOI] [PubMed] [Google Scholar]
  • 127.Mononen I, Karjalainen E. Structural comparison of protein sequences around potential N-glycosylation sites. Biochim Biophys Acta. 1984;788:364–367. [Google Scholar]
  • 128.Fraser PE, Deber CM. Structure and function of the proline-rich region of myelin basic protein. Biochemistry. 1985;24:4593–4598. doi: 10.1021/bi00338a017. [DOI] [PubMed] [Google Scholar]
  • 129.Persaud R, Boggs JM, Wood DD, Moscarello MA. Interaction of glycosylated human myelin basic protein with lipid bilayers. Biochemistry. 1989;28:4209–4216. doi: 10.1021/bi00436a013. [DOI] [PubMed] [Google Scholar]
  • 130.De Ferra F, Engh H, Hudson L. Alternative splicing accounts for the four forms of myelin basic protein. Cell. 1985;43:721–727. doi: 10.1016/0092-8674(85)90245-4. [DOI] [PubMed] [Google Scholar]
  • 131.Takahashi N, Roach A, Teplow DB, Prusiner SB, Hood L. Cloning and characterization of the myelin basic protein gene from mouse: one gene can encode both the 14 Kd and 18.5 Kd MBPs by the alternate use of exons. Cell. 1985;42:139–148. doi: 10.1016/s0092-8674(85)80109-4. [DOI] [PubMed] [Google Scholar]
  • 132.Kamholz J, de Ferra F, Puckett C, Lazzarini R. Vol. 83. 1986. Identification of three forms of human myelin basic protein by cDNA cloning; pp. 4962–4966. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Miskimins R, Ebato H, Seyfried TN, Yu RK. Vol. 83. 1986. Molecular basis for heterosis for myelin basic protein content in mice; pp. 1532–1535. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Newman S, Kitamura K, Campagnoni AT. Vol. 84. 1987. Identification of a cDNA coding for a fifth form of myelin basic protein in mouse; pp. 886–890. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Chapman BE, Moore WJ. Conformation of myelin basic protein in aqueous solution from nuclear magnetic resonance spectroscopy. Biochem Biophys Res Commun. 1976;73:758–765. doi: 10.1016/0006-291x(76)90874-3. [DOI] [PubMed] [Google Scholar]
  • 136.Littlemore LAT. N.M.R. studies on myelin basic protein. II 1H N.M.R. studies of the protein and constituent peptides in aqueous solutions. Aust J Chem. 1978;31:2387–2398. [Google Scholar]
  • 137.Littlemore LAT, Ledeen R. N.M.R. studies of myelin basic protein. III. Interaction of the protein with lipid micelles by 1H and 31P N.M.R. Aust J Chem. 1979;32:2631–2636. [Google Scholar]
  • 138.Gow A, Smith R. The thermodynamically stable state of myelin basic protein in aqueous solution is a flexible coil. Biochem J. 1989;257:535–540. doi: 10.1042/bj2570535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Whitaker JN, Chou C-HJ, Chou FC-H, Kibler RF. Molecular internalization of A region of myelin basic protein. J Exp Med. 1977;146:317–331. doi: 10.1084/jem.146.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Jones AJS, Epand RM. Effect of microheterogeneity on the structure and function of the myelin basic protein. Biochim Biophys Acta. 1980;625:165–178. doi: 10.1016/0005-2795(80)90281-0. [DOI] [PubMed] [Google Scholar]
  • 141.Randall CS, Zand R. Spectroscopic assessment of secondary and tertiary structure in myelin basic protein. Biochemistry. 1985;24:1998–2004. doi: 10.1021/bi00329a030. [DOI] [PubMed] [Google Scholar]
  • 142.Randall CS, Zand R. Microcalorimetric studies of the heats of solution of bovine myelin basic protein. Biochim Biophys Acta. 1985;831:242–248. doi: 10.1016/0167-4838(85)90041-x. [DOI] [PubMed] [Google Scholar]
  • 143.Anthony JS, Moscarello MA. A conformation change induced in the basic encephalitogen by lipids. Biochim Biophys Acta. 1971;243:429–433. doi: 10.1016/0005-2795(71)90011-0. [DOI] [PubMed] [Google Scholar]
  • 144.Liebes LF, Zand R, Phillips WD. Circular dichroism and 220 MHz PMR studies of the bovine myelin basic protein. Vol. 405. 1975. Solution behaviour; pp. 27–39. (Biochim Biophys Acta). [DOI] [PubMed] [Google Scholar]
  • 145.Keniry MA, Smith R. Circular dichroic analysis of the secondary structure of myelin basic protein and derived peptides bound to detergents and to lipid vesicles. Biochim Biophys Acta. 1979;578:381–391. doi: 10.1016/0005-2795(79)90169-7. [DOI] [PubMed] [Google Scholar]
  • 146.Keniry MA, Smith R. Dependence on lipid structure of the coil-to-helix transition of bovine myelin basic protein. Biochim Biophys Acta. 1981;668:107–118. doi: 10.1016/0005-2795(81)90154-9. [DOI] [PubMed] [Google Scholar]
  • 147.Eylar EH, Thompson M. Allergic encephalomyelitis: the physiochemical properties of the basic protein encephalitogen from bovine spinal cord. Arch Biochem Biophys. 1969;129:469–479. doi: 10.1016/0003-9861(69)90204-5. [DOI] [PubMed] [Google Scholar]
  • 148.Chao IP, Einstein ER. Physical properties of bovine encephalitogenic protein: molecular weight and conformation. J Neurochem. 1970;17:1121–1132. doi: 10.1111/j.1471-4159.1970.tb03360.x. [DOI] [PubMed] [Google Scholar]
  • 149.Stoner GL. Predicted folding of β-structure in myelin basic protein. J Neurochem. 1984;43:443–447. doi: 10.1111/j.1471-4159.1984.tb00919.x. [DOI] [PubMed] [Google Scholar]
  • 150.Surewicz WK, Moscarello MA, Mantsch HH. Fourier transform infrared spectroscopic investigation of the interaction between myelin basic protein and dimyristoylphosphatidylglycerol bilayers. Biochemistry. 1987;26:3881–3886. doi: 10.1021/bi00387a021. [DOI] [PubMed] [Google Scholar]
  • 151.Deber CM, Moscarello MA, Wood DD. Conformational studies on 13C-enriched human and bovine myelin basic protein, in solution and incorporated into liposomes. Biochemistry. 1978;17:898–903. doi: 10.1021/bi00598a024. [DOI] [PubMed] [Google Scholar]
  • 152.Fraser PE, Rand RP, Deber CM. Bilayer-stabilizing properties of myelin basic protein in dioleoylphosphatidylethanolamine systems. Biochim Biophys Acta. 1989;983:23–29. doi: 10.1016/0005-2736(89)90375-1. [DOI] [PubMed] [Google Scholar]
  • 153.Rand RP, Fuller N, Lis LJ. Myelin swelling and measurement of forces between myelin membranes. Nature. 1979;279:258–260. doi: 10.1038/279258a0. [DOI] [PubMed] [Google Scholar]
  • 154.Kirschner DA, Ganser AL. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature. 1980;283:207–210. doi: 10.1038/283207a0. [DOI] [PubMed] [Google Scholar]
  • 155.Readhead C, Popko B, Takahashi N. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell. 1987;48:703–712. doi: 10.1016/0092-8674(87)90248-0. [DOI] [PubMed] [Google Scholar]
  • 156.Dupouey P, Jacque C, Bourre JM, Cesselin F, Privat A, Baumann N. Immunochemical studies of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci Lett. 1979;12:113–118. doi: 10.1016/0304-3940(79)91490-3. [DOI] [PubMed] [Google Scholar]
  • 157.Sternberger NH, Itoyama Y, Kies MW, Webster HdeF. Vol. 75. 1978. Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation; pp. 2521–2524. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Imamoto K, LeBlond CP. Radioautographic investigation of gliogenesis in the corpus callosum of young rats. J Comp Neurol. 1978;180:139–164. doi: 10.1002/cne.901800109. [DOI] [PubMed] [Google Scholar]
  • 159.Zeller NK, Behar TN, Dubois-Dalcq ME, Lazzarini RA. The timely expression of myelin basic protein gene in cultured rat brain oligodendrocytes is independent of continuous neuronal influences. J Neurosci. 1985;5:2955–2962. doi: 10.1523/JNEUROSCI.05-11-02955.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Kristensson K, Holmes KV, Duchala CS, Zeller NK, Lazzarini RA, Dubois-Dalcq M. Increased levels of myelin basic protein transcripts gene in virus-induced demyelination. Nature. 1986;322:544–547. doi: 10.1038/322544a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Lampe PD, Nelsestuen GL. Myelin basic protein-enhanced fusion of membranes. Biochim Biophys Acta. 1982;693:320–325. doi: 10.1016/0005-2736(82)90438-2. [DOI] [PubMed] [Google Scholar]
  • 162.Boggs JM, Moscarello MA, Papahadjopoulos D. Phase separation of acidic and neutral phospholipids induced by human myelin basic protein. Biochemistry. 1977;16:5420–5426. doi: 10.1021/bi00644a003. [DOI] [PubMed] [Google Scholar]
  • 163.Gould RM, London Y. Effects of basic protein in glucose leakage from liposomes. Vol. 290. 1972. Specific interaction of central nervous system myelin basic protein with lipids; pp. 200–218. (Biochim Biophys Acta). [DOI] [PubMed] [Google Scholar]
  • 164.Stollery JG, Boggs JM, Moscarello MA, Deber CM. Direct observation by carbon-13 nuclear magnetic resonance of membrane-bound human myelin basic protein. Biochemistry. 1980;19:2391–2396. doi: 10.1021/bi00552a017. [DOI] [PubMed] [Google Scholar]
  • 165.Hughes DW, Stollery JG, Moscarello MA, Deber CM. Binding of myelin basic protein to phospholipid micelles. J Biol Chem. 1982;257:4698–4700. [PubMed] [Google Scholar]
  • 166.Smith R. 1H-nuclear magnetic resonance study of the association of the basic protein of central nervous system myelin with lysophosphatidylcholine. Biophys Chem. 1982;16:347–354. doi: 10.1016/0301-4622(82)87038-5. [DOI] [PubMed] [Google Scholar]
  • 167.Smith R, Cornell BA, Keniry MA, Separovic F. 31P Nuclear magnetic resonance studies of the association of basic proteins with multilayers of diacyl phosphatidylserine. Biochim Biophys Acta. 1983;732:492–498. doi: 10.1016/0005-2736(83)90225-0. [DOI] [PubMed] [Google Scholar]
  • 168.Boggs JM, Stollery JG, Moscarello MA. Effect of lipid environment on the motion of a spin-label covalently bound to myelin basic protein. Biochemistry. 1980;19:1226–1233. doi: 10.1021/bi00547a029. [DOI] [PubMed] [Google Scholar]
  • 169.Boggs JM, Wood DD, Moscarello MA. Participation of N-terminal and C-terminal portions. Vol. 20. 1981. Hydrophobic and electrostatic interactions of myelin basic protein with lipid; pp. 1065–1073. (Biochemistry). [DOI] [PubMed] [Google Scholar]
  • 170.Boggs JM, Stamp D, Moscarello MA. Interaction of myelin basic protein with dipalmitoylphosphatidylglycerol: dependence on the lipid phase and investigation of a metastable state. Biochemistry. 1981;20:6066–6072. doi: 10.1021/bi00524a023. [DOI] [PubMed] [Google Scholar]
  • 171.Vadas EB, Melancon P, Braun PE, Galley WC. Phosphorescence studies of the interaction of myelin basic protein with phosphatidylserine vesicles. Biochemistry. 1981;20:3110–3116. doi: 10.1021/bi00514a019. [DOI] [PubMed] [Google Scholar]
  • 172.Jones AJS, Rumsby MG. The intrinsic fluorescence characteristics of the myelin basic protein. J Neurochem. 1975;25:565–572. doi: 10.1111/j.1471-4159.1975.tb04369.x. [DOI] [PubMed] [Google Scholar]
  • 173.MacNaughtan W, Snook KA, Caspi E, Franks NP. An X-ray diffraction analysis of oriented lipid mulilayers containing basic proteins. Biochim Biophys Acta. 1985;818:132–148. doi: 10.1016/0005-2736(85)90556-5. [DOI] [PubMed] [Google Scholar]
  • 174.Deber CM, Hughes DW, Fraser PE, Pawagi AB, Moscarello MA. Binding of normal and multiple sclerosis-derived myelin basic protein to phospholipid vesicles: effects of membrane head group and bilayer regions. Arch Biochem Biophys. 1986;245:455–463. doi: 10.1016/0003-9861(86)90237-7. [DOI] [PubMed] [Google Scholar]
  • 175.Golds EE, Braun PE. Protein association and basic protein conformation in the myelin membrane. J Biol Chem. 1978;253:8162–8170. [PubMed] [Google Scholar]
  • 176.Golds EE, Braun PE. Crosslinking studies on the conformation and dimerization of myelin basic protein in solution. J Biol Chem. 1978;253:8171–8177. [PubMed] [Google Scholar]
  • 177.Smith R. Self-association of myelin basic protein: enhancement by detergents and lipids. Biochemistry. 1982;21:2697–2701. doi: 10.1021/bi00540a019. [DOI] [PubMed] [Google Scholar]
  • 178.Moskaitis JE, Shriver LC, Campagnoni AT. The association of myelin basic protein with itself and other proteins. Neurochem Res. 1987;12:409–417. doi: 10.1007/BF00972291. [DOI] [PubMed] [Google Scholar]
  • 179.Smith R. Noncovalent cross-linking of lipid bilayers by myelin basic protein — a possible role in myelin formation. Biochim Biophys Acta. 1977;470:170–184. doi: 10.1016/0005-2736(77)90098-0. [DOI] [PubMed] [Google Scholar]
  • 180.Mendz GL, Moore WJ, Brown LR, Martenson RE. Interaction of myelin basic protein with micelles of dodecylphosphocholine. Biochemistry. 1984;23:6041–6046. doi: 10.1021/bi00320a022. [DOI] [PubMed] [Google Scholar]
  • 181.Mendz GL, Moore WJ, Kaplin IJ. Characterization of dodecylphosphocholine/myelin basic protein complexes. Biochemistry. 1988;27:379–386. doi: 10.1021/bi00401a057. [DOI] [PubMed] [Google Scholar]
  • 182.Brady GW, Fein DB, Wood DD, Moscarello MA. The role of charge microheterogeneity of human myelin basic protein in the formation of phosphatidylglycerol multilayers. Biochem Biophys Res Commun. 1985;126:1161–1165. doi: 10.1016/0006-291x(85)90307-9. [DOI] [PubMed] [Google Scholar]
  • 183.Moscarello MA, Brady GW, Fein DB, Wood DD, Cruz TF. The role of charge microheterogeneity of basic protein in the formation and maintenance of the multilayered structure of myelin: a possible role in multiple sclerosis. J Neurosci Res. 1986;15:87–99. doi: 10.1002/jnr.490150109. [DOI] [PubMed] [Google Scholar]
  • 184.Cheifetz S, Moscarello MA. Effect of bovine basic protein charge microheterogeneity on protein-induced aggregation of unilamellar vesicles containing a mixture of acidic and neutral phospholipids. Biochemistry. 1985;24:1909–1914. doi: 10.1021/bi00329a016. [DOI] [PubMed] [Google Scholar]
  • 185.Cheifetz S, Boggs JM, Moscarello MA. Increase in vesicle permeability mediated by myelin basic protein: effect of phosphorylation of basic protein. Biochemistry. 1985;24:5170–5175. doi: 10.1021/bi00340a032. [DOI] [PubMed] [Google Scholar]
  • 186.Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+2- T lymphocytes. J Immunol. 1981;127:1420–1423. [PubMed] [Google Scholar]
  • 187.Swanborg R. Autoimmune effector cells. V. A monoclonal antibody specific for rat helper T lymphocytes inhibits adoptive transfer of autoimmune encephalomyelitis. J Immunol. 1983;130:1503–1505. [PubMed] [Google Scholar]
  • 188.Ellerman KE, Powers JM, Brostoff SW. A suppressor T-lymphocyte cell line for autoimmune encephalomyelitis. Nature. 1988;331:265–267. doi: 10.1038/331265a0. [DOI] [PubMed] [Google Scholar]
  • 189.Zamvil S, Nelson P, Trotter J. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature. 1985;317:355–358. doi: 10.1038/317355a0. [DOI] [PubMed] [Google Scholar]
  • 190.Price WS, Mendz GL, Martenson E. Conformation of a heptadecapeptide comprising the segment encephalitogenic in rhesus monkey. Biochemistry. 1988;27:8990–8999. doi: 10.1021/bi00425a017. [DOI] [PubMed] [Google Scholar]
  • 191.Moscarello MA. Chemical and physical properties of myelin proteins. In: Bronner F, Kleinzeller A, editors. Vol. 8. Academic Press; New York: 1976. pp. 1–28. (Current topics in membranes and transport). [Google Scholar]
  • 192.Folch J, Lees M. Proteolipids, a new type of tissue lipoproteins. J Biol Chem. 1951;191:807–817. [PubMed] [Google Scholar]
  • 193.Lees MB, Chao BH, Lin L-FH, Samiullah M, Laursen RA. Amino acid sequence of bovine white matter proteolipid. Arch Biochem Biophys. 1983;226:643–656. doi: 10.1016/0003-9861(83)90334-x. [DOI] [PubMed] [Google Scholar]
  • 194.Jolles J, Nussbaum J-L, Jolles P. Sequence data. Vol. 742. 1983. Enzymic and chemical fragmentation of the apoprotein of the major rat brain myelin proteolipid; pp. 33–38. (Biochim Biophys Acta). [DOI] [PubMed] [Google Scholar]
  • 195.Milner RJ, Lai C, Nave K-A, Lenoir D, Ogata J, Sutcliffe JG. Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell. 1985;42:931–939. doi: 10.1016/0092-8674(85)90289-2. [DOI] [PubMed] [Google Scholar]
  • 196.Willard HF, Riordan JR. Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science. 1985;230:940–942. doi: 10.1126/science.3840606. [DOI] [PubMed] [Google Scholar]
  • 197.Naismith AL, Hoffman-Chudzik E, Tsui L-C, Riordan JR. Study of the expression of myelin proteolipid protein (lipophilin) using a cloned complementary DNA. Nucl Acids Res. 1985;13:7413–7425. doi: 10.1093/nar/13.20.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Yamamura T, Namikawa T, Endoh M, Kunishita T, Tabira T. Passive transfer of experimental allergic encephalomyelitis induced by proteolipid apoprotein. J Neurol Sci. 1986;76:269–275. doi: 10.1016/0022-510x(86)90174-7. [DOI] [PubMed] [Google Scholar]
  • 199.Trotter JL, Clark HB, Collins KG, Wegeschiede CL, Scarpellini JD. Myelin proteolipid protein induces demyelinating disease in mice. J Neurol Sci. 1987;79:173–188. doi: 10.1016/0022-510x(87)90271-1. [DOI] [PubMed] [Google Scholar]
  • 200.Laursen RA, Samiullah M, Lees MB. Vol. 81. 1984. The structure of bovine brain myelin proteolipid and its organization in myelin; pp. 2912–2916. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Stoffel W, Hillen H, Giersiefen H. Vol. 81. 1984. Structure and molecular arrangement of proteolipid protein of central nervous system myelin; pp. 5012–5016. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Edwards AM, Ross NW, Ulmer JB, Braun PE. Interaction of myelin basic protein and proteolipid protein. J Neurol Res. 1989;22:97–102. doi: 10.1002/jnr.490220113. [DOI] [PubMed] [Google Scholar]
  • 203.Simons R, Alon N, Riordan JR. Human myelin DM-20 proteolipid protein deletion defined by cDNA sequence. Biochem Biophys Res Commun. 1987;146:666–671. doi: 10.1016/0006-291x(87)90580-8. [DOI] [PubMed] [Google Scholar]
  • 204.Weise MJ. Hydrophobic regions in myelin proteins characterized through analysis of “hydropathic” profiles. J Neurochem. 1985;44:163–170. doi: 10.1111/j.1471-4159.1985.tb07126.x. [DOI] [PubMed] [Google Scholar]
  • 205.Stoffel W, Subkowski T, Jander S. Topology of proteolipid protein in the myelin membrane of central nervous system. Hoppe Seyler's Z. Physiol Chem. 1989;370:165–176. doi: 10.1515/bchm3.1989.370.1.165. [DOI] [PubMed] [Google Scholar]
  • 206.Kahan I, Moscarello MA. Identification of membrane-embedded domains of lipophilin from human myelin. Biochemistry. 1985;24:538–544. doi: 10.1021/bi00323a044. [DOI] [PubMed] [Google Scholar]
  • 207.Kyte J, Doolittle RF. A simple method for displaying the hydrophobic character of a protein. J Mol Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  • 208.Schulz GE, Schirmer RH. Springer-Verlag; New York: 1979. Principles of protein structure; pp. 66–106. [Google Scholar]
  • 209.Surewicz WK, Moscarello MA, Mantsch HH. Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectrometry. J Biol Chem. 1987;262:8402–8598. [PubMed] [Google Scholar]
  • 210.Cockle SA, Epand RM, Stollery JG, Moscarello MA. Nature of cysteinyl residues in lipophilin from human myelin. J Biol Chem. 1980;255:9182–9188. [PubMed] [Google Scholar]
  • 211.Papahadjopoulos D, Vail WJ, Moscarello MA. Interaction of a purified hydrophobic protein from myelin with phospholipid membranes; studies on ultrastructure, phase transitions and permeability. J Memb Biol. 1975;22:143–164. doi: 10.1007/BF01868168. [DOI] [PubMed] [Google Scholar]
  • 212.Boggs JM, Vail WJ, Moscarello MA. Preparation and properties of vesicles of a purified hydrophobic myelin protein and phospholipid: a spin label study. Biochim Biophys Acta. 1976;448:517–530. doi: 10.1016/0005-2736(76)90107-3. [DOI] [PubMed] [Google Scholar]
  • 213.Meier P, Sachse J-H, Brophy PJ, Marsh D, Kothe G. Vol. 84. 1987. Integral membrane proteins significantly decrease the molecular motion in lipid bilayers: a deuterium NMR relaxation study of membranes containing myelin proteolipid apoprotein; pp. 3704–3708. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Braun PE, Radin NS. Interaction of lipids with a membrane structural protein from myelin. Biochemistry. 1969;8:4310–4318. doi: 10.1021/bi00839a014. [DOI] [PubMed] [Google Scholar]
  • 215.Stoffyn P, Folch-Pi J. On the type of linkage binding fatty acids present in brain white matter proteolipid apoprotein. Biochem Biophys Res Commun. 1971;44:157–161. doi: 10.1016/s0006-291x(71)80172-9. [DOI] [PubMed] [Google Scholar]
  • 216.Townsend LE, Agrawal D, Benjamins JA, Agrawal HC. In vitro acylation of rat brain myelin proteolipid protein. J Biol Chem. 1982;257:9745–9750. [PubMed] [Google Scholar]
  • 217.Yoshimura T, Agrawal D, Agrawal HC. Cell-free acylation of rat brain myelin proteolipid protein and DM-20. Biochem J. 1987;246:611–617. doi: 10.1042/bj2460611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Stoffel W, Hillen H, Schroeder W, Deutzmann R. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein) Hoppe Seyler's Z. Physiol Chem. 1983;364:1455–1466. doi: 10.1515/bchm2.1983.364.2.1455. [DOI] [PubMed] [Google Scholar]
  • 219.Bizzozero OA, McGarry JG, Lees MB. Autoacylation of myelin proteolipid protein with acyl coenzyme A. J Biol Chem. 1987;262:13550–13557. [PubMed] [Google Scholar]
  • 220.O'Brien PJ, St Jules RS, Reedy TS, Bazan NG, Katz M. Acylation of disc membrane rhodopsin may be nonenzymatic. J Biol Chem. 1987;262:5210–5215. [PubMed] [Google Scholar]
  • 221.Diehl H-J, Schaich M, Budzinski R-M, Stoffel W. Vol. 83. 1986. Individual exons encode the integral membrane domains of human myelin proteolipid protein; pp. 9807–9811. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Nave KA, Lai C, Bloom FE, Milner RJ. Vol. 83. 1986. Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing; pp. 9264–9268. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Hudson LD, Berndt JA, Puckett C, Kozak CA, Lazzarini RA. Vol. 84. 1987. Aberrant splicing of proteolipid protein mRNA in the dysmyelinating jimpy mutant mouse; pp. 1454–1458. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Duncan ID, Hammang JP, Trapp BD. Vol. 84. 1987. Abnormal compact myelin in the myelin-deficient rat: absence of proteolipid protein correlates with a defect in the intraperiod line; pp. 6287–6291. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Trotter JL, Clark HB. Contamination of proteolipid protein with basic protein. Ann Neurol. 1984;16:513–514. doi: 10.1002/ana.410160417. [DOI] [PubMed] [Google Scholar]
  • 226.Hashim GA, Wood DD, Moscarello MA. Myelin-lipophilin induced experimental allergic encephalomyelitis. Neurochem Res. 1980;5:1137–1145. doi: 10.1007/BF00966171. [DOI] [PubMed] [Google Scholar]
  • 227.Cambi F, Lees MB, Williams RM, Macklin WB. Chronic experimental allergic encephalomyelitis produced by bovine proteolipid apoprotein: immunological studies in rabbits. Ann Neurol. 1983;13:303–308. doi: 10.1002/ana.410130313. [DOI] [PubMed] [Google Scholar]
  • 228.Kirschner DA, Caspar DLD. Diffraction studies of molecular organization in myelin. In: Morell P, editor. Myelin. Plenum Press; Heidelberg: 1977. pp. 51–89. [Google Scholar]
  • 229.Horrocks LA. The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin layer chromatography. J Lipid Res. 1968;9:469–474. [PubMed] [Google Scholar]
  • 230.Sun GY, Samorajski T. Age differences in the acyl group composition of phosphoglycerides in myelin isolated from the brain of the rhesus monkey. Biochim Biophys Acta. 1973;316:19–24. doi: 10.1016/0005-2760(73)90162-8. [DOI] [PubMed] [Google Scholar]
  • 231.Curatolo W. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry. 1982;21:1761–1764. doi: 10.1021/bi00537a010. [DOI] [PubMed] [Google Scholar]
  • 232.Ledeen RW, Cochran FB, Yu RK, Samuels FG, Haley JE. Gangliosides of the CNS myelin membrane. Adv Exp Med Biol. 1980;125:167–176. doi: 10.1007/978-1-4684-7844-0_16. [DOI] [PubMed] [Google Scholar]
  • 233.Hauser G, Eichberg J. The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim Biophys Acta. 1973;326:210–217. doi: 10.1016/0005-2760(73)90247-6. [DOI] [PubMed] [Google Scholar]
  • 234.Svennerholm L, Vanier MT, Jungbjer B. Changes in fatty acid composition of human brain myelin lipids during maturation. J Neurochem. 1978;30:1383–1390. doi: 10.1111/j.1471-4159.1978.tb10470.x. [DOI] [PubMed] [Google Scholar]
  • 235.Svennerholm L, Vanier MT. Lipid and fatty acid composition of human cerebral myelin during development. Adv Exp Biol Med. 1979;100:27–41. doi: 10.1007/978-1-4684-2514-7_3. [DOI] [PubMed] [Google Scholar]
  • 236.Boggs JM, Rangaraj G. Changes in the composition of two molecular species of ethanolamine plasmalogen in normal human myelin during development. Biochim Biophys Acta. 1984;793:313–316. doi: 10.1016/0005-2760(84)90335-7. [DOI] [PubMed] [Google Scholar]
  • 237.Hosein ZZ, Gilbert JJ, Strejan GH. The role of myelin lipids in experimental allergic encephalomyelitis. In: Alvord EC Jr., editor. Experimental allergic encephalomyelitis: a useful model for multiple sclerosis. Alan R. Liss, Inc.; New York: 1984. pp. 49–54. [Google Scholar]
  • 238.Carroll WM, Jennings AR, Mastaglia FL. Experimental demyelinating optic neuropathy induced by intraneural injection of galactocerebroside antiserum. J Neurol Sci. 1984;65:125–135. doi: 10.1016/0022-510x(84)90077-7. [DOI] [PubMed] [Google Scholar]
  • 239.Ariga T, Kohriyama T, Freddo L. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J Biol Chem. 1987;262:848–853. [PubMed] [Google Scholar]
  • 240.Wood DD, Moscarello MA. Is the myelin membrane abnormal in multiple sclerosis? J Membrane Biol. 1984;79:195–201. doi: 10.1007/BF01871058. [DOI] [PubMed] [Google Scholar]
  • 241.Davison AW, Wajda M. Cerebral lipids in multiple sclerosis. J Neurochem. 1962;9:427–432. doi: 10.1111/j.1471-4159.1962.tb09470.x. [DOI] [PubMed] [Google Scholar]
  • 242.Wender M, Filipek-Wender H, Stanislawska J. Cholesteryl esters of the brain in demyelinating diseases. Clin Chim Acta. 1974;54:269–275. doi: 10.1016/0009-8981(74)90245-9. [DOI] [PubMed] [Google Scholar]
  • 243.Shah SN, Johnson RC. Activity levels of cholesterol ester metabolizing enzymes in brain in multiple sclerosis: correlation with cholesterol ester concentrations. Exp Neurol. 1980;68:601–604. doi: 10.1016/0014-4886(80)90114-4. [DOI] [PubMed] [Google Scholar]
  • 244.Trotter J, Smith ME. Macrophage-mediated demyelination: the role of phospholipases and antibody. In: Alvord EC Jr., editor. Experimental allergic encephalomyelitis: a useful model for multiple sclerosis. Alan R. Liss, Inc.; New York: 1984. pp. 55–60. [Google Scholar]
  • 245.Yu RK, Ledeen RW, Eng LF. Ganglioside abnormalities in multiple sclerosis. J Neurochem. 1974;23:169–174. doi: 10.1111/j.1471-4159.1974.tb06931.x. [DOI] [PubMed] [Google Scholar]
  • 246.Low PA, Schmelzer JD, Yao JK, Dyck PJ, Parthasarathy S, Baumann WJ. Structural specificity in demyelination induced by lysophospholipids. Biochim Biophys Acta. 1983;754:298–304. doi: 10.1016/0005-2760(83)90146-7. [DOI] [PubMed] [Google Scholar]
  • 247.Weiner HL, Hauser SL. Neuroimmunology II: antigenic specificity of the nervous system. Ann Neurol. 1982;12:499–509. doi: 10.1002/ana.410120602. [DOI] [PubMed] [Google Scholar]
  • 248.Turner RS, Raynor RL, Mazzei GJ, Kuo JF. Vol. 81. 1984. Developmental studies of phospholipid-sensitive Ca2+-dependent protein kinase and its substrates of phosphoprotein phosphatases in rat brain; pp. 3143–3147. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical Biochemistry are provided here courtesy of Elsevier

RESOURCES