Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2002 Apr 26;207(2):266–270. doi: 10.1016/0014-5793(86)81502-2

Analogous amino acid sequences in myelin proteolipid and viral proteins

Shyh-Yu Shaw 1, Richard A Laursen 1,, Marjorie B Lees 1
PMCID: PMC7130213  PMID: 2429866

Abstract

Computer analysis of the intrinsic membrane protein, myelin proteolipid, shows strong sequence similarities between the putative extramembrane segments of the proteolipid protein and a number of viral proteins, several of which infect humans. These similarities are even more striking than those reported previously between viral proteins and the encephalitogenic myelin basic protein (MBP). These findings, along with other reports of molecular mimicry by viruses, suggest that immunological cross‐reactions between virus‐induced antibodies or T‐cells and analogous antigenic determinants (epitopes) in myelin proteolipid could be involved in the pathophysiology of multiple sclerosis or post‐infectious demyelinating syndromes.

Keywords: Proteolipid protein; Multiple sclerosis; Viral protein; Myelin basic protein; Sequence homology; Amino acid sequence; MBP, myelin basic protein; EAE, experimental allergic encephalomyelitis; CNS, central nervous system; MLV, murine leukemia virus; AIDS, acquired immune deficiency syndrome; HTLV-III/LAV, human T-lymphotropic retrovirus

Shaw Shyh-Yu,Laursen Richard A. and Lees Marjorie B.(1986), Analogous amino acid sequences in myelin proteolipid and viral proteins, FEBS Letters, 207, doi: 10.1016/0014-5793(86)81502-2

References

  • 1. Johnson R.T., Viral Infections of the Nervous System (1984), Raven ; New York: 263 ff– [Google Scholar]
  • 2. Alvord E.C. jr, Kies M.W., Suckling A.J., Experimental Allergic Encephalomyelitis: A Useful Model for Multiple Sclerosis (1984), Liss ; New York: [Google Scholar]
  • 3. Jahnke U., Fischer E.H., Alvord E.C. jr, Science, 229, (1985), 282– 284. [DOI] [PubMed] [Google Scholar]
  • 4. Fujinami R.S., Oldstone M.B.S., Science, 230, (1985), 1043– 1045. [DOI] [PubMed] [Google Scholar]
  • 5. Brostoff S.W., Morell P. Myelin (1984), Plenum ; New York: 405– 439. [Google Scholar]
  • 6. Lees M.B., Chao B.H., Lin L.-F., Samiullah M., Laursen R.A., Arch. Biochem. Biophys., 226, (1983), 643– 656. [DOI] [PubMed] [Google Scholar]
  • 7. Stoffel W., Hillen H., Schroeder W., Deutzman R., Hoppe Seyler's Z. Physiol. Chem., 364, (1983), 1455– 1466. [DOI] [PubMed] [Google Scholar]
  • 8. Laursen R.A., Samiullah M., Lees M.B., Proc. Natl. Acad. Sci. USA, 81, (1984), 2912– 2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Stoffel W., Hillen H., Giersiefen H., Proc. Natl. Acad. Sci. USA, 81, (1984), 5012– 5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Cambi F., Lees M.B., Williams R.M., Macklin W.B., Ann. Neurol., 13, (1983), 303– 308. [DOI] [PubMed] [Google Scholar]
  • 11. Hopp T.P., Woods K.R., Proc. Natl. Acad. Sci. USA, 78, (1981), 3824– 3828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Dayhoff M.O., Atlas of Protein Sequence and Structure 5, (1978), Natl. Biomed. Res. Foundation ; Silver Springs, MD: 353– 358. suppl.3 [Google Scholar]
  • 13. Wiley D.C., Wilson I.A., Skehel J.J., Nature, 289, (1981), 373– 378. [DOI] [PubMed] [Google Scholar]
  • 14. Sarin P.S., Sun D.K., Thornton A.H., Naylor P.H., Goldstein A.L., Science, 232, (1986), 1135– 1137. [DOI] [PubMed] [Google Scholar]
  • 15. Pruijn G.J.M., Kusters H.G., Gmelig Meyling F.H.J., Van der Vliet P.C., Eur. J. Biochem., 154, (1986), 363– 370. [DOI] [PubMed] [Google Scholar]

Articles from Febs Letters are provided here courtesy of Wiley

RESOURCES