Abstract
This chapter focuses on the contributions that studies with viruses have made to current concepts in cell biology. Among the important advantages that viruses provide in such studies is their structural and genetic simplicity. The chapter describes the methods for growth, assay, and purification of viruses and infection of cells by several viruses that have been widely utilized for studies of cellular processes. Most investigations of virus replication at the cellular level are carried out using animal cells in culture. For the events in individual cells to occur with a high level of synchrony, single cycle growth conditions are used. Cells are infected using a high multiplicity of infectious virus particles in a low volume of medium to enhance the efficiency of virus adsorption to cell surfaces. After the adsorption period, the residual inoculum is removed and replaced with an appropriate culture medium. During further incubation, each individual cell in the culture is at a similar temporal stage in the viral replication process. Therefore, experimental procedures carried out on the entire culture reflect the replicative events occurring within an individual cell. The length of a single cycle of virus growth can range from a few hours to several days, depending on the virus type.
References
- Aloni Y., Dhar R., Laub O., Horowitz M., Khoury G. Novel mechanism for RNA maturation: The leader sequences of SV40 mRNA are not transcribed adjacent to the coding sequences. Proc. Natl. Acad. Sci. USA. 1977;74:3686–3690. doi: 10.1073/pnas.74.9.3686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andino R., Rieckhof G.E., Achacoso P.L., Baltimore D. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′ end of viral RNA. EMBO J. 1993;12:3587–3598. doi: 10.1002/j.1460-2075.1993.tb06032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bablanian R., Eggers H.J., Tamm I. Studies on the mechanism of poliovirus-induced cell damage. I. The relation between poliovirus-induced metabolic and morphological alterations in cultured cells. Virology. 1965;26:100–113. doi: 10.1016/0042-6822(65)90030-9. [DOI] [PubMed] [Google Scholar]
- Balcarova-Ständer J., Pfeiffer S.E., Fuller S.D., Simons K. Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line. EMBO J. 1984;3:2687–2694. doi: 10.1002/j.1460-2075.1984.tb02194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baltimore D., Franklin R.M., Callender J. Mengovirus-induced inhibition of host ribonucleic acid and protein synthesis. Biochim. Biophys. Acta. 1963;76:425–430. [PubMed] [Google Scholar]
- Baltimore D., Girard M., Darnell J.E. Aspects of the synthesis of poliovirus and the formation of virus particles. Virology. 1966;29:179–189. doi: 10.1016/0042-6822(66)90024-9. [DOI] [PubMed] [Google Scholar]
- Berget S.M., Moore C., Sharp P.A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA. 1977;74:3171–3175. doi: 10.1073/pnas.74.8.3171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergmann J.E., Kupfer A., Singer S.J. Membrane insertion at the leading edge of motile fibroblasts. Proc. Natl. Acad. Sci. USA. 1983;80:1367–1371. doi: 10.1073/pnas.80.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bittman R., Majuk Z., Honig D.S., Compans R.W., Lenard J. Permeability properties of the membrane of vesicular stomatitis virions. Biochim. Biophys. Acta. 1976;433:63–74. doi: 10.1016/0005-2736(76)90178-4. [DOI] [PubMed] [Google Scholar]
- Both G.W., Mattick J.S., Bellamy A.R. Serotype-specific glycoprotein of simian 11 rotavirus: Coding assignment and gene sequence. Proc. Natl. Acad. Sci. USA. 1983;80:3091–3095. doi: 10.1073/pnas.80.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowen H.A., Lyles D.S. Structure of Sendai viral proteins in plasma membranes of virus-infected cells. J. Virol. 1981;37:1079–1082. doi: 10.1128/jvi.37.3.1079-1082.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brewer C.B., Roth M.G. A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J. Cell Biol. 1991;114:413–421. doi: 10.1083/jcb.114.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukrinskaya A.G., Vorkunova N.D., Kornliayeva G.V., Narmanbetova R.A., Vorkunova G.K. Influenza virus uncoating in infected cells and effect of rimantadine. J. Gen. Virol. 1982;60:49–59. doi: 10.1099/0022-1317-60-1-49. [DOI] [PubMed] [Google Scholar]
- Bukrinsky M.I., Sharona N., Mc Donald T.L., Pushkarskaya T., Tarpley W.G., Stevenson M. Association of integral, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following infection. Proc. Natl. Acad. Sci. USA. 1993;90:6125–6129. doi: 10.1073/pnas.90.13.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caplan M.J., Anderson H.C., Palade G.E., Jamieson J.D. Intracellular sorting and polarized cell surface delivery of (Na+,K+)ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell. 1986;46:623–631. doi: 10.1016/0092-8674(86)90888-3. [DOI] [PubMed] [Google Scholar]
- Carr C.M., Kim P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993;73:823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
- Cartwright B., Talbot P., Brown F. A spliced sequence at the 5′ terminus of adenovirus late mRNA. J. Gen. Virol. 1970;29:332–344. [Google Scholar]
- Challberg M., Kelly T.J. Adenovirus DNA replication in vitro. Proc. Natl. Acad. Sci. USA. 1979;76:655–659. doi: 10.1073/pnas.76.2.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Challberg M.D., Kelly T.J. Animal virus DNA replication. Annu. Rev. Biochem. 1989;58:671–717. doi: 10.1146/annurev.bi.58.070189.003323. [DOI] [PubMed] [Google Scholar]
- Chen S.-Y., Matsuoka Y., Compans R.W. Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology. 1991;183:351–365. doi: 10.1016/0042-6822(91)90148-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi W.-S., Pal-Ghosh R., Morrow C.D. Expression of human immunodeficiency virus type 1 (HIV-1) gag, pol, and env proteins from chimeric HIV-1-poliovirus minireplicons. J. Virol. 1991;65:2875–2883. doi: 10.1128/jvi.65.6.2875-2883.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choppin P.W. Replication of influenza virus in a continuous cell line: High yield of infective virus from cells innoculated at high multiplicity. Virology. 1969;39:130–134. doi: 10.1016/0042-6822(69)90354-7. [DOI] [PubMed] [Google Scholar]
- Chow L.T., Gelinas R.E., Broker T.R., Roberts R.J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell. 1977;12:1–8. doi: 10.1016/0092-8674(77)90180-5. [DOI] [PubMed] [Google Scholar]
- Chow M., Newman J.F.E., Filman D., Hogle J.M., Rowlands D.J., Brown F. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature (London) 1987;327:482–486. doi: 10.1038/327482a0. [DOI] [PubMed] [Google Scholar]
- Ciampor F., Baley P.M., Nermut M.V., Hirst E.M.A., Sugrue R.J., Hay A.J. Evidence that the amantidine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology. 1992;186:14–24. doi: 10.1016/0042-6822(92)90730-d. [DOI] [PubMed] [Google Scholar]
- Cole C.N., Smoler D., Wimmer E., Baltimore D. Defective interfering particles of poliovirus. I. Isolation and physical properties. J. Virol. 1971;7:478–485. doi: 10.1128/jvi.7.4.478-485.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compans R.W. Distinct carbohydrate components of influenza virus proteins in smooth and rough cytoplasmic membranes. Virology. 1973;55:541–545. doi: 10.1016/0042-6822(73)90199-2. [DOI] [PubMed] [Google Scholar]
- Compans R.W., Klenk H.-D., Caliguiri L.A., Choppin P.W. Influenza virus proteins: I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology. 1970;42:880–889. doi: 10.1016/0042-6822(70)90337-5. [DOI] [PubMed] [Google Scholar]
- Copeland C.S., Doms R.W., Bolzau E.M., Webster R.G., Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J. Cell Biol. 1986;103:1179–1191. doi: 10.1083/jcb.103.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels R.S., Downie J.C., Hay A.J. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell. 1985;40:401–439. doi: 10.1016/0092-8674(85)90157-6. [DOI] [PubMed] [Google Scholar]
- Darneli J.E., Levintow L. Poliovirus protein: Source of amino acids and time course of synthesis. J. Biol. Chem. 1960;235:74–77. [PubMed] [Google Scholar]
- 1964.Department of the Army, “Laboratory Procedures in Virology,” TM 8--227--7., 1964, Headquarters, Department of the Army, Washington, D.C.
- Doms R.W., Lamb R.A., Rose J.K., Helenius A. Folding and assembly of viral membrane proteins. Virology. 1993;193:545–562. doi: 10.1006/viro.1993.1164. [DOI] [PubMed] [Google Scholar]
- Dotti C.G., Simons K. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell. 1990;62:63–72. doi: 10.1016/0092-8674(90)90240-f. [DOI] [PubMed] [Google Scholar]
- Dubois-Dalcq M., Holmes K.V., Rentier B. “Assembly of Enveloped RNA Viruses.”. Springer-Verlag; Wien: 1984. [Google Scholar]
- Dulbecco R., Vogt M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J. Exp. Med. 1954;99:167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enders J.F., Wellers T.H., Robbins F.C. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science. 1949;109:85–87. doi: 10.1126/science.109.2822.85. [DOI] [PubMed] [Google Scholar]
- Fanning E., Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu. Rev. Biochem. 1992;64:55–85. doi: 10.1146/annurev.bi.61.070192.000415. [DOI] [PubMed] [Google Scholar]
- Fernandez-Tomas G.B., Baltimore D. Morphogenesis of poliovirus. II. Demonstration of a new intermediate, the provirion. J. Virol. 1973;12:1122–1130. doi: 10.1128/jvi.12.5.1122-1130.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fixman E.D. Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J. Virol. 1992;66:5030–5039. doi: 10.1128/jvi.66.8.5030-5039.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freistadt M.S., Racaniello V.R. Mutational analysis of the cellular receptor for poliovirus. J. Virol. 1991;65:3873–3876. doi: 10.1128/jvi.65.7.3873-3876.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallagher P.J., Henneberry I., Wilson I., Sambrook J., Gething M.-J.H. Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus. J. Virol. 1992;66:7136–7145. doi: 10.1128/jvi.66.12.7136-7145.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gething M.J., Mc Cammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport. Cell. 1986;46:939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
- Gibson R., Schlesinger S., Kornfeld S. The non-glycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
- Gibson R., Kornfeld S., Schlesinger S. A role for oligosaccharides in glycoprotein biosynthesis. Trends Biol. Sci. 1980;5:290–293. [Google Scholar]
- Griffiths G., Pfeiffer S., Simons K., Matlin K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J. Cell Biol. 1985;101:949–964. doi: 10.1083/jcb.101.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison S.C., Jumblatt J., Darnell J.E. Lipid and protein organization in Sindbis virus. J. Mol. Biol. 1971;60:523–528. doi: 10.1016/0022-2836(71)90186-0. [DOI] [PubMed] [Google Scholar]
- Hay A.J., Wolstenholme A.J., Skehel J.J., Smith M.H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985;4:3021–3024. doi: 10.1002/j.1460-2075.1985.tb04038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson L.E., Krutzsch H.C., Oroszlan S. Myristyl amino-terminal acylation of murine retrovirus proteins: An unusual post-translational protein modification. Proc. Natl. Acad. Sci. USA. 1983;80:339–343. doi: 10.1073/pnas.80.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogle J.M., Chow M., Filman D.J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science. 1985;229:1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
- Holland J.J. Receptor affinities as major determinants of enterovirus tissue tropisms in humans. Virology. 1961;15:312–326. doi: 10.1016/0042-6822(61)90363-4. [DOI] [PubMed] [Google Scholar]
- Holland J.J., Mc Laren J.C., Syverton J.T. The mammalian cell virus relationship. IV. Infection of naturally insusceptible cells with enterovirus ribonucleic acid. J. Exp. Med. 1959;110:65–80. doi: 10.1084/jem.110.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes K.V., Choppin P.W. On the role of the response of the cell membrane in determining virus virulence. Contrasting effects of the parainfluenza virus SV5 in two cells types. J. Exp. Med. 1966;124:501–531. doi: 10.1084/jem.124.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homma M., Ohuchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural differences of Sendai viruses grown in eggs and tissue culture cells. J. Virol. 1973;12:1457–1463. doi: 10.1128/jvi.12.6.1457-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard S.C., Ivatt R.J. Synthesis of the N-linked oligosaccharides of glycoproteins: Assembly of the lipid-linked precursor oligosaccharide and its relation to protein synthesis in vivo. Annu. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
- Ihara T., Smith J., Dalrymple J.M., Bishop D.H.L. Complete sequences of the glycoproteins and M RNA of Punta Toro Phlebovirus compared to those of Rift Valley fever virus. Virology. 1985;144:246–259. doi: 10.1016/0042-6822(85)90321-6. [DOI] [PubMed] [Google Scholar]
- Jones L.V., Compans R.W., Davis A.R., Bos T.J., Nayak D.P. Surface expression of the influenza neuraminidase, an amino-terminally anchored viral membrane glycoprotein, in polarized epithelial cells. Mol. Cell. Biol. 1985;5:2181–2189. doi: 10.1128/mcb.5.9.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalderon D., Richardson W.D., Markham A.T., Smith A.E. Sequence requirements for nuclear location of Simian virus 40 large T antigen. Nature (London) 1984;311:33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
- Kalderon D., Roberts B.L., Richardson W.D., Smith A.E. A short amino acid sequence able to specify nuclear location. Cell. 1984;39:4182–4189. doi: 10.1016/0092-8674(84)90457-4. [DOI] [PubMed] [Google Scholar]
- Kates J., Beeson J. Ribonucleic acid synthesis in vaccinia virus. I. The mechanism of synthesis and release of RNA in vaccinia cores. J. Mol. Biol. 1970;50:1–18. doi: 10.1016/0022-2836(70)90100-2. [DOI] [PubMed] [Google Scholar]
- Kato N., Eggers H.J. Inhibition of uncoating of fowl plague virus by 1-amantadine hydrochloride. Virology. 1969;37:632–641. doi: 10.1016/0042-6822(69)90281-5. [DOI] [PubMed] [Google Scholar]
- Katz F.N., Lodish H.F. Transmembrane biogenesis of the vesicular stomatitis virus glycoprotein. J. Cell Biol. 1979;80:416–426. doi: 10.1083/jcb.80.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khoury G., Gruss P. Enhancer elements. Cell. 1983;33:313–314. doi: 10.1016/0092-8674(83)90410-5. [DOI] [PubMed] [Google Scholar]
- Klenk H.-D., Choppin P.W. Lipids of plasma membranes of monkey and hamster kidney cells and of parainfluenza virions grown in these cells. Virology. 1969;38:255–268. doi: 10.1016/0042-6822(69)90367-5. [DOI] [PubMed] [Google Scholar]
- Klenk H.-D., Choppin P.W. Glycolipid content of vesicular stomatitis virus grown in baby hamster kidney cells. J. Virol. 1971;7:416–417. doi: 10.1128/jvi.7.3.416-417.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klenk H.-D., Compans R.W., Choppin P.W. An electron microscopic study of the presence or absence of neuraminic acid in enveloped viruses. Virology. 1970;42:1158–1162. doi: 10.1016/0042-6822(70)90368-5. [DOI] [PubMed] [Google Scholar]
- Klenk H.-D., Wollert W., Rott R., Schollissek C. Association of influenza virus proteins with cytoplasmic fractions. Virology. 1974;57:28–41. doi: 10.1016/0042-6822(74)90105-6. [DOI] [PubMed] [Google Scholar]
- Klenk H.-D., Rott R., Orlich M., Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
- Klessig D.F. Two adenovirus mRNAs have a common 5′ terminal leader sequence encoded at least 10 kb upstream from their main coding regions. Cell. 1977;12:9–21. doi: 10.1016/0092-8674(77)90181-7. [DOI] [PubMed] [Google Scholar]
- Koike S., Ise I., Nomoto A. Functional domain of the poliovirus receptor. Proc. Natl. Acad. Sci. USA. 1991;88:4104–4108. doi: 10.1073/pnas.88.10.4104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolakofsky D., Vidal S., Curran J. Paramyxovirus RNA synthesis and P gene expression. In: Kingsbury D.W., editor. Plenum Press; New York: 1991. pp. 215–234. (“The Paramyxoviruses”). [Google Scholar]
- Krug R.M., Alonso-Caplen F.V., Julkunen I., Katze M.G. Expression and replication of the influenza virus genome. In: Krug R.M., editor. Plenum Press; New York: 1989. pp. 89–152. (“The Influenza Virus”). [Google Scholar]
- Lamb R.A., Choppin P.W. Synthesis of influenza virus proteins in infected cells: Translation of viral polypeptides, including three P polypeptides, from RNA produced by primary transcription. Virology. 1976;74:504–519. doi: 10.1016/0042-6822(76)90356-1. [DOI] [PubMed] [Google Scholar]
- Landsberger F.R., Lenard J., Paxton J., Compans R.W. Spin-label electron spin resonance study of the lipid-containing membrane of influenza virus. Proc. Natl. Acad. Sci. USA. 1971;68:2579–2583. doi: 10.1073/pnas.68.10.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanford R.E., Butel J. Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell. 1984;37:801–813. doi: 10.1016/0092-8674(84)90415-x. [DOI] [PubMed] [Google Scholar]
- Lazarowitz S.G., Choppin P.W. Synthesis of influenza virus proteins in infected cells: Translation of viral polypeptides, including three P polypeptides, from RNA produced by primary transcription. Virology. 1975;68:440–445. doi: 10.1016/0042-6822(76)90356-1. [DOI] [PubMed] [Google Scholar]
- Leibowitz R., Penman S. Regulation of protein synthesis in HeLa cells. III. Inhibition during poliovirus infection. J. Virol. 1971;8:661–668. doi: 10.1128/jvi.8.5.661-668.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lenard J., Compans R.W. The membrane structure of lipid-containing viruses. Biochim. Biophys. Acta. 1974;344:51–94. doi: 10.1016/0304-4157(74)90008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levintow L. The reproduction of picornaviruses. In: Fraenkel-Contrat H., Wagner R.R., editors. Vol. 2. Plenum; New York: 1974. pp. 106–169. (“Comprehensive Virology”). [Google Scholar]
- Li J.J., Kelly T.J. Simian virus 40 DNA replication in vitro. Proc. Natl. Acad. Sci. USA. 1984;81:6973–6977. doi: 10.1073/pnas.81.22.6973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingappa V.R., Kato F.N., Lodish H.F., Blobel G. A signal sequence for the insertion of a transmembrane glycoprotein. Similarities to signals of secretory proteins in primary structure and function. J. Biol. Chem. 1978;253:8667–8670. [PubMed] [Google Scholar]
- Lyles D.S. Glycoproteins of Sendai virus are transmembrane proteins. Proc. Natl. Acad. Sci. USA. 1979;66:5621–5625. doi: 10.1073/pnas.76.11.5621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machamer C., Rose J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machamer C.E., Florkiewitz R.Z., Rose J.K. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol. Cell. Biol. 1985;5:3074–3083. doi: 10.1128/mcb.5.11.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machamer C.E., Mentone S.A., Rose J.K., Farquhar M.G. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc. Natl. Acad. Sci. USA. 1990;87:6944–6948. doi: 10.1073/pnas.87.18.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machamer C.E., Grim M.G., Esquela A., Chung S.W., Rolls M., Ryan K., Swift A.M. Retention of a cis Golgi protein requires polar residues on one face of a predicted α-helix in the transmembrane domain. Mol. Biol. Cell. 1993;4:695–704. doi: 10.1091/mbc.4.7.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magee A.I., Koyama A.H., Malfer C., Wen D., Schlesinger M.J. Release of fatty acids from virus glycoproteins by hydroxylamine. Biochim. Biophys. Acta. 1984;793:156–166. doi: 10.1016/0304-4165(84)90298-8. [DOI] [PubMed] [Google Scholar]
- Manley J.L., Fire H., Cano A., Sharp P.A., Gefter M.L. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. USA. 1980;77:3855–3859. doi: 10.1073/pnas.77.7.3855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh M., Griffiths G., Dean G.E., Mellman I., Helenius A. Three-dimensional structure of endosomes in BHK-21 cells. Proc. Natl. Acad. Sci. USA. 1986;83:2899–2903. doi: 10.1073/pnas.83.9.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin K., Helenius A. Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import. Cell. 1991;67:117–130. doi: 10.1016/0092-8674(91)90576-k. [DOI] [PubMed] [Google Scholar]
- Matlin K.S., Simons K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell. 1983;34:233–243. doi: 10.1016/0092-8674(83)90154-x. [DOI] [PubMed] [Google Scholar]
- Matlin K.S., Reggio H., Helenius A., Simons K. Pathway of vesicular stomatitis virus entry leading to infection. J. Mol. Biol. 1982;156:609. doi: 10.1016/0022-2836(82)90269-8. [DOI] [PubMed] [Google Scholar]
- Matlin K.S., Reggio H., Helenius A., Simons K. The entry of enveloped viruses into an epithelial cell line. Prog. Clin. Biol. Res. 1982;91:599. [PubMed] [Google Scholar]
- Matsuoka Y., Ihara T., Bishop D.H.L., Compans R.W. Intracellular accumulation of Punta Toro virus glycoproteins expressed from cloned cDNA. Virology. 1988;167:251–260. doi: 10.1016/0042-6822(88)90075-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuoka, Y., Chen, S.-Y., Compans, R. W., A signal for Golgi retention in the bunyavirus G1 glycoprotein., 1994, (Submitted for publication.) [PubMed]
- Mc Pherson I., Stoker M. Polyoma transformation of hamster cell clones. An investigation of genetic factors affecting cell competence. Virology. 1962;16:147–151. doi: 10.1016/0042-6822(62)90290-8. [DOI] [PubMed] [Google Scholar]
- Mc Sharry J., Benzinger R. Concentration and purification of vesicular stomatitis virus by polyethylene glycol “precipitation.”. Virology. 1970;40:745–779. doi: 10.1016/0042-6822(70)90219-9. [DOI] [PubMed] [Google Scholar]
- Meier-Ewert H., Compans R.W. Time course of synthesis and assembly of influenza virus proteins. J. Virol. 1974;14:1083–1091. doi: 10.1128/jvi.14.5.1083-1091.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelsohn C.L., Wimmer E., Racaniello V.R. Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
- Montagnier L., Sanders F.K. Replicative form of encephalomyocarditis virus ribonucleic acid. Nature (London) 1963;199:664–667. doi: 10.1038/199664a0. [DOI] [PubMed] [Google Scholar]
- Munro S. Sequences within and adjacent to the transmembrane segment of α-2,6-sialyltransferase specify Golgi retention. EMBO J. 1991;10:3577–3588. doi: 10.1002/j.1460-2075.1991.tb04924.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy F.A., Harrison A.K., Whitfield S.G. Bunyaviridae: Morphologic and morphogenetic similarities of bunyamwera serologic supergroup viruses and several other arthropod-borne viruses. Intervirology. 1973;1:297–316. doi: 10.1159/000148858. [DOI] [PubMed] [Google Scholar]
- Naim H.Y., Amarneh B., Ktistakis N.T., Roth M.G. Effects of altering palmitylation sitdes on biosynthesis and function of the influenza virus hemagglutinin. J. Virol. 1992;66:7585–7588. doi: 10.1128/jvi.66.12.7585-7588.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura K., Compans R.W. Biosynthesis of the oligosaccharides of influenza virus glycoproteins. Virology. 1979;93:31–47. doi: 10.1016/0042-6822(79)90273-3. [DOI] [PubMed] [Google Scholar]
- Nevins J.R. The pathway of eukaryotic mRNA formation. Annu. Rev. Biochem. 1983;52:441–466. doi: 10.1146/annurev.bi.52.070183.002301. [DOI] [PubMed] [Google Scholar]
- Ng D.T.W., Hiebert S.W., Lamb R.A. Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of simian virus 5 hemagglutinin-neuraminidase. Mol. Cell. Biol. 1990;10:1989–2001. doi: 10.1128/mcb.10.5.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson T., Jackson M., Peterson P.A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell. 1989;58:707–718. doi: 10.1016/0092-8674(89)90105-0. [DOI] [PubMed] [Google Scholar]
- Nilsson T., Lucocq J.M., Mackay D., Warren G. The membrane spanning domain of β-1,4-galactosyltransferase specifies trans Golgi localization. EMBO J. 1991;10:3567–3575. doi: 10.1002/j.1460-2075.1991.tb04923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palese P., Tobita K., Ueda M., Compans R.W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology. 1974;61:397–404. doi: 10.1016/0042-6822(74)90276-1. [DOI] [PubMed] [Google Scholar]
- Palmer D.F., Coleman M.T., Dowdle W.R., Schild G.C. “Advanced Laboratory Techniques for Influenza Diagnosis.”. Centers for Disease Control U.S. Department of Health, Education and Welfare.; Atlanta, Georgia: 1975. [Google Scholar]
- Pensiero M.N., Jennings G.B., Schmaljohn C.S., Hay J. Expression of the Hantaan virus M genome segment by using a vaccinia virus recombinant. J. Virol. 1988;62:696–702. doi: 10.1128/jvi.62.3.696-702.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Percy N., Barclay W.S., Sullivan M., Almond J.W. A poliovirus replicon containing the chloramphenicol acetyl-transferase gene can be used to study the replication and encapsidation of poliovirus RNA. J. Virol. 1992;66:5040–5046. doi: 10.1128/jvi.66.8.5040-5046.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petterson R.F., Gahmberg N., Kuismanen E., Kaariainen L., Ronnholm R., Saraste J. Bunyavirus membrane glycoproteins as models for Golgi-specific proteins. Mod. Cell Biol. 1988;6:65–96. [Google Scholar]
- Philipson L., Wall R., Glickman G., Darnell J.E. Addition of polyadenylate sequences to virus-specific RNA during adenovirus replication. Proc. Natl. Acad. Sci. USA. 1971;68:2806–2809. doi: 10.1073/pnas.68.11.2806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto L.H., Holsinger L.J., Lamb R.A. Influenza virus M2 protein has ion channel activity. Cell. 1992;69:517–528. doi: 10.1016/0092-8674(92)90452-i. [DOI] [PubMed] [Google Scholar]
- Porter D.C., Ansardi D.C., Choi W.-S., Morrow C.D. Encapsidation of genetically engineered poliovirus minireplicons which express human immunodeficiency virus type 1 Gag and Pol proteins upon infection. J. Virol. 1993;67:3712–3719. doi: 10.1128/jvi.67.7.3712-3719.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poruchynsky M.S., Tyndall C., Both G.W., Sato F., Bellamy A.R. Deletions into an NH2-terminal hydrophobic domain result in secretion of rotavirus VP7, a resident endoplasmic reticulum membrane protein. J. Cell Biol. 1985;101:2199–2209. doi: 10.1083/jcb.101.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racaniello V.R. Poliovirus neurovirulence. Adv. Virus Res. 1988;34:217–246. doi: 10.1016/s0065-3527(08)60519-9. [DOI] [PubMed] [Google Scholar]
- Ren R., Racaniello V.R. Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J. Virol. 1992;66:296–304. doi: 10.1128/jvi.66.1.296-304.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J.C., Scalera V., Simmons N.L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim. Biophys. Acta. 1981;673:26–36. [PubMed] [Google Scholar]
- Rifkin D.B., Compans R.W. Identification of the spike proteins of Rous sarcoma virus. Virology. 1971;46:485–489. doi: 10.1016/0042-6822(71)90049-3. [DOI] [PubMed] [Google Scholar]
- Rindler M.J., Ivanov I.E., Plesken H., Rodriguez-Boulan E.J., Sabatini D.D. Viral glycoproteins destined for apical or basolateral membrane domains traverse the same Golgi apparatus during their intracellular transport in Madin-Darby canine kidney cells. J. Cell. Biol. 1984;98:1304–1319. doi: 10.1083/jcb.98.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts P.C., Garten W., Klenk H.-D. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. J. Virol. 1993;67:3048–3060. doi: 10.1128/jvi.67.6.3048-3060.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez-Boulan E., Powell S.K. Polarity of epithelial and neuronal cells. Annu. Rev. Cell Biol. 1992;8:395–427. doi: 10.1146/annurev.cb.08.110192.002143. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Boulan E., Sabatini D.D. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity. Proc. Natl. Acad. Sci. USA. 1978;75:5071–5075. doi: 10.1073/pnas.75.10.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose J.K., Bergmann J.E. Expression from cloned cDNA of cell-surface secreted forms of the glycoprotein of vesicular stomatitis virus in eukaryotic cells. Cell. 1982;30:753–762. doi: 10.1016/0092-8674(82)90280-x. [DOI] [PubMed] [Google Scholar]
- Rose J.K., Adams G.A., Gallione C.J. The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition. Proc. Natl. Acad. Sci. USA. 1984;81:2050–2054. doi: 10.1073/pnas.81.7.2050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth M.G., Compans R.W. Delayed appearance of pseudotypes between vesicular stomatitis virus and influenza virus during mixed infection of MDCK cells. J. Virol. 1981;40:848–860. doi: 10.1128/jvi.40.3.848-860.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth M.G., Fitzpatrick J.P., Compans R.W. Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: Lack of a requirement for glycosylation of viral glycoproteins. Proc. Natl. Acad. Sci. USA. 1979;76:6430–6434. doi: 10.1073/pnas.76.12.6430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth M.G., Compans R.W., Giusti L., Davis A.R., Nayak D.P., Gething M.J., Sambrook J. Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA. Cell. 1983;33:435–442. doi: 10.1016/0092-8674(83)90425-7. [DOI] [PubMed] [Google Scholar]
- Roth M.G., Srinivas R.V., Compans R.W. Basolateral maturation of retroviruses in polarized epithelial cells. J. Virol. 1983;45:1065–1073. doi: 10.1128/jvi.45.3.1065-1073.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J.E., Lodish H.F. Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 1977;269:775–780. doi: 10.1038/269775a0. [DOI] [PubMed] [Google Scholar]
- Rothman J.E., Miller R.L., Urbani L.J. Intercompartmental transport in the Golgi complex is a dissociative process: Facile transfer of membrane protein between two Golgi populations. J. Cell Biol. 1984;99:260–271. doi: 10.1083/jcb.99.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowlands D.J., Shirley M.W., Sangal D.V., Brown F. A high density component in several vertebrate enteroviruses. J. Gen. Virol. 1975;29:223–234. doi: 10.1099/0022-1317-29-2-223. [DOI] [PubMed] [Google Scholar]
- Rueckert R. Picornaviridae and their replication. In: Fields B.N., Knipe D.M., editors. Vol. 1. Raven Press; New York: 1990. pp. 507–548. (“Virology”). [Google Scholar]
- Scharff M.D., Shatkin A.J., Levintow L. Association of newly formed viral protein with specific polyribosomes. Proc. Natl. Acad. Sci. USA. 1963;50:686–694. doi: 10.1073/pnas.50.4.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scharff M.D., Maizel J.V., Levintow L. Physical and immunological properties of a soluble precursor of the poliovirus capsid. Proc. Natl. Acad. Sci. USA. 1964;51:329–337. doi: 10.1073/pnas.51.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheid A., Choppin P.W. Identification and biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
- Schlegel R., Tralka T.S., Willingham M.C., Pastan I. Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV binding site? Cell. 1983;32:639. doi: 10.1016/0092-8674(83)90483-x. [DOI] [PubMed] [Google Scholar]
- Schmid S., Fuchs R., Kielian M., Helenius A., Mellman I. Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J. Cell Biol. 1989;108:1291–1300. doi: 10.1083/jcb.108.4.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt M.F., Schlesinger M.J. Fatty acid binding to vesicular stomatitis virus glycoprotein: A new type of post-translational modification of the viral glycoprotein. Cell. 1979;17:813–819. doi: 10.1016/0092-8674(79)90321-0. [DOI] [PubMed] [Google Scholar]
- Schmidt M.F.G., Bracha M., Schlesinger M.J. Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins. Proc. Natl. Acad. Sci. USA. 1979;76:1687–1691. doi: 10.1073/pnas.76.4.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider R.J., Shenk T. Impact of virus infection on host cell protein synthesis. Annu. Rev. Biochem. 1987;56:317–332. doi: 10.1146/annurev.bi.56.070187.001533. [DOI] [PubMed] [Google Scholar]
- Schultz A.M., Rein A. Unmyristylated Moloney murine leukemia virus Pr65gag is excluded from virus assembly and maturation events. J. Virol. 1989;63:2370–2372. doi: 10.1128/jvi.63.5.2370-2373.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulze I.T. The structure of influenza virus I. The polypeptides of the virion. Virology. 1970;47:181–196. doi: 10.1016/0042-6822(70)90338-7. [DOI] [PubMed] [Google Scholar]
- Shapiro G.I., Gurney T., Jr., Krug R.M. Influenza virus gene expression: Control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J. Virol. 1987;61:764–773. doi: 10.1128/jvi.61.3.764-773.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shatkin A.J. Capping of eucaryotic mRNAs. Cell. 1976;9:645–653. doi: 10.1016/0092-8674(76)90128-8. [DOI] [PubMed] [Google Scholar]
- Simpson D.A., Lamb R.A. Alterations to influenza virus hemagglutinin cytoplasmic tail modulate virus infectivity. J. Virol. 1992;66:790–803. doi: 10.1128/jvi.66.2.790-803.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skehel J.J. Polypeptide synthesis in influenza virus-infected cells. Virology. 1972;49:23–36. doi: 10.1016/s0042-6822(72)80004-7. [DOI] [PubMed] [Google Scholar]
- Skehel J.J., Hay A.J., Armstrong J.A. On the mechanism of inhibition of influenza virus replication by amantadine hydrochloride. J. Gen. Virol. 1978;38:97–110. doi: 10.1099/0022-1317-38-1-97. [DOI] [PubMed] [Google Scholar]
- Stirzaker S.C., Both G.W. The signal peptide of the rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell. 1989;56:741–747. doi: 10.1016/0092-8674(89)90677-6. [DOI] [PubMed] [Google Scholar]
- Sugrue R.J., Bahadur G., Zambon M.C., Hall-Smith M., Douglas A.R., Hay A.J. Specific alteration of the influenza hemagglutinin by amantidine. EMBO J. 1990;9:3469–3476. doi: 10.1002/j.1460-2075.1990.tb07555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers D.F., Maizel J.V. Disaggregation of HeLa cell polysomes after infection with poliovirus. Virology. 1967;31:550. doi: 10.1016/0042-6822(67)90237-1. [DOI] [PubMed] [Google Scholar]
- Summers D.F., Maizel J.V. Evidence for large precursor proteins in poliovirus synthesis. Proc. Natl. Acad. Sci. USA. 1968;59:966–971. doi: 10.1073/pnas.59.3.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swift A.M., Machamer C.E. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell Biol. 1991;115:19–30. doi: 10.1083/jcb.115.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas S.M., Lamb R.A., Paterson R.G. Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell. 1988;54:891–902. doi: 10.1016/S0092-8674(88)91285-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobita K., Sugiura A., Enomote C., Furuyama M. Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med. Microbiol. Immunol. (Berlin) 1975;162:9–14. doi: 10.1007/BF02123572. [DOI] [PubMed] [Google Scholar]
- Toneguzzo F., Ghosh H.P. In vitro synthesis of vesicular stomatitis virus membrane glycoprotein and insertion into membranes. Proc. Natl. Acad. Sci. USA. 1978;75:715–719. doi: 10.1073/pnas.75.2.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze J., Tooze S.A., Fuller S.D. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells. J. Cell Biol. 1987;105:1215–1226. doi: 10.1083/jcb.105.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker S.P., Compans R.W. Virus infection of polarized epithelial cells. Adv. Virus Res. 1993;42:187–247. doi: 10.1016/S0065-3527(08)60086-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker S.P., Melsen L.R., Compans R.W. Migration of polarized epithelial cells through permeable membrane substrates of defined pore size. Eur. J. Cell Biol. 1992;58:280–290. [PubMed] [Google Scholar]
- Varghese J.N., Laver W.G., Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature (London) 1983;303:35–40. doi: 10.1038/303035a0. [DOI] [PubMed] [Google Scholar]
- Vidal S., Curran J., Kolakofsky D. Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J. Virol. 1990;64:239–246. doi: 10.1128/jvi.64.1.239-246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner R.R. Reproduction of rhabdoviruses. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 4. Plenum Press; New York: 1975. pp. 1–93. (“Comprehensive Virology”). [Google Scholar]
- Wagner R.R., Synder R.M., Yamazaki S. Proteins of vesicular stomatitis virus: Kinetics and cellular sites of synthesis. J. Virol. 1970;5:548–558. doi: 10.1128/jvi.5.5.548-558.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C., Takeuchi K., Pinto L.H., Lamb R.A. Ion channel activity of influenza A virus M2 protein: Characterization of the amantadine block. J. Virol. 1993;67:5585–5594. doi: 10.1128/jvi.67.9.5585-5594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasmoen T.L., Kaleach L.T., Collett M.S. Rift Valley fever M segment: Cellular localization of M segment-encoded proteins. Virology. 1988;166:275–280. doi: 10.1016/0042-6822(88)90174-2. [DOI] [PubMed] [Google Scholar]
- Weil P.A., Luse D.S., Segall J., Roeder R.G. Selective and accurate initiation of transcription at the Adz major late promoter in a soluble system dependent on purified RNA polymerase II and DNA. Cell. 1979;18:469–484. doi: 10.1016/0092-8674(79)90065-5. [DOI] [PubMed] [Google Scholar]
- Weisz O.A., Swift A.M., Machamer C.E. Oligomerization of a membrane protein correlates with its retention in the Golgi complex. J. Cell Biol. 1993;122:1185–1196. doi: 10.1083/jcb.122.6.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J.M. Membrane fusion. Science. 1992;258:917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
- White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
- Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature (London) 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
- Wu C.A. Identification of Herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. J. Virol. 1988;62:435–443. doi: 10.1128/jvi.62.2.435-443.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu G. Adenovirus DNA-directed transcription of 5.5S RNA in vitro. Proc. Natl. Acad. Sci. USA. 1978;75:2175–2179. doi: 10.1073/pnas.75.5.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi-Koll U., Niegers K.J., Drzeniek R. Isolation and characterization of “dense particles” from poliovirus-infected HeLa cells. J. Gen. Virol. 1975;26:307–319. doi: 10.1099/0022-1317-26-3-307. [DOI] [PubMed] [Google Scholar]
