Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2010 Jan 25;26:75–80. [Article in Spanish] doi: 10.1016/S0213-005X(08)76544-3

Detección automática de bacterias y hongos en sangre

Automatic detection of bacterial and fungal infections in blood

José Miguel Molina a, Juan Córdoba a, Paula Ramírez b, Miguel Gobernado a,
PMCID: PMC7130238  PMID: 19195450

Abstract

Sepsis is one of the main causes of mortality and morbidity in hospitals. Early detection of pathogens using nucleic acid-based techniques speeds diagnosis of bacteremia and/or fungemia, aids the rapid application of appropriate antibiotics, reduces the use of unnecessary antibiotics, and lowers mortality. Two commercially available techniques that help to identify different sepsisproducing bacteria and fungi in a shorter time period are: LightCycler® SeptiFast Test Mgrade (Roche Diagnostic SL) and GenoType Blood Culture (Hain Lifescience). We present the results of an initial in-house study using the LightCycler® SeptiFast Test Mgrade. The study was carried out in 50 samples from 28 patients (1-3 samples per patient) with septic syndrome admitted to the intensive care unit by comparing the new technique with conventional blood culture. The concordance between the results of blood culture and SeptiFast was good, 79%, in the first trial and 89% in the second, after correcting for technical defects. We initially observed substantial inhibition of internal controls in Gram-negative bacilli, due to the presence of heparin in the blood used, and excess DNA because of the high number of leucocytes. To minimize these inhibitions, the second study used 24 samples at half the original volume (extracted DNA at 1/4 concentration). With these modifications, inhibitions were substantially reduced. SeptiFast is more effective than blood culture in discriminating between contamination by coagulase-negative staphylococci and species of streptococci.

Key words: Sepsis, Blood culture, SeptiFast, Molecular biology, Nucleic acid-based techniques, LightCycler

Bibliografía

  • 1.Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J., Pinsky M.R. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002. [DOI] [PubMed] [Google Scholar]
  • 2.Dombrovskiy V.Y., Martin A.A., Sunderram J., Paz H.L. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1244–1250. doi: 10.1097/01.CCM.0000261890.41311.E9. [DOI] [PubMed] [Google Scholar]
  • 3.Linde-Zwirble W.T., Angus D.C. Severe sepsis epidemiology: sampling, selection, and society. Crit Care. 2004;8:222–226. doi: 10.1186/cc2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Martin G.S., Mannino D.M., Eaton S., Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554. doi: 10.1056/NEJMoa022139. [DOI] [PubMed] [Google Scholar]
  • 5.Nin N., Lorente J.A., Ortiz-Leyba C., Valenzuela F., Baigorri F., López Rodríguez A., por la Red para el Estudio del Shock y la Sepsis (RESYS) Estudio multicéntrico sobre la asociación entre variables relacionadas con la resucitación y la mortalidad en sepsis grave. Med Intensiva. 2005;29:212–218. [Google Scholar]
  • 6.Burchardi H., Schneider H. Economic aspects of severe sepsis: a review of intensive care unit costs, cost of illness and cost effectiveness of therapy. Pharmacoeconomics. 2004;22:793–813. doi: 10.2165/00019053-200422120-00003. [DOI] [PubMed] [Google Scholar]
  • 7.Iñigo J., Sendra J.M., Díaz R., Bouza C., Sarría-Santamera A. Epidemiología y costes de la sepsis grave en Madrid: Estudio de altas hospitalarias. Med Intensiva. 2006;30:197–203. doi: 10.1016/s0210-5691(06)74507-7. [DOI] [PubMed] [Google Scholar]
  • 8.Esteban A., Frutos-Vivar F., Ferguson N.D., Gordo F., Honrubia T., Peñuelas O. Incidence and outcomes of sepsis in an health area from Madrid, Spain. Am J Respir Crit Care Med. 2004;169:A846. [Google Scholar]
  • 9.Álvarez-Lerma F., Palomar M., Olaechea P., Otal J.J., Insausti J., Cerdá E., Grupo de Estudio de Vigilancia de Infección Nosocomial en UCI Estudio Nacional de Vigilancia de Infección Nosocomial en Unidades de Cuidados Intensivos. Informe evolutivo de los años 2003-2005. Med Intensiva. 2007;31:6–17. doi: 10.1016/s0210-5691(07)74764-2. [DOI] [PubMed] [Google Scholar]
  • 10.Dellinger R.P., Levy M.M., Carlet J.M., Bion J., Parker M.M., Jaeschke R. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34:17–60. doi: 10.1007/s00134-007-0934-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Meisner M. Biomarkers of sepsis: clinically useful? Curr Opin Crit Care. 2005;11:473–480. doi: 10.1097/01.ccx.0000176694.92883.ce. [DOI] [PubMed] [Google Scholar]
  • 12.Mitaka C. Clinical laboratory differentiation of infectious versus non-infectious systemic inflammatory response syndrome. Clin Chim Acta. 2005;351:17–29. doi: 10.1016/j.cccn.2004.08.018. [DOI] [PubMed] [Google Scholar]
  • 13.Eberhard O.K., Haubitz M., Brunkhorst F.M., Kliem V., Koch K.M., Brunkhorst R. Usefulness of procalcitonin for differentiation between activity of systemic autoimmune disease (systemic lupus erythematosus/systemic antineutrophil cytoplasmic antibody-associated vasculitis) and invasive bacterial infection. Arthritis Rheum. 1997;40:1250–1256. doi: 10.1002/1529-0131(199707)40:7<1250::AID-ART9>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  • 14.Hammer S., Meisner F., Dirschedl P., Hobel G., Fraunberger P., Meiser B. Procalcitonin: a new marker for diagnosis of acute rejection and bacterial infection in patients after heart and lung transplantation. Transpl Immunol. 1998;6:235–241. doi: 10.1016/s0966-3274(98)80013-0. [DOI] [PubMed] [Google Scholar]
  • 15.Rau B., Steinbach G., Gansauge F., Mayer J.M., Grunert A., Beger H.G. The potential role of procalcitonin and interleukin 8 in the prediction of infected necrosis in acute pancreatitis. Gut. 1997;41:832–840. doi: 10.1136/gut.41.6.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Jones A.E., Fiechtl J.F., Brown M.D., Ballew J.J., Kline J.A. Procalcitonin test in the diagnosis of bacteremia: a meta-analysis. Ann Emerg Med. 2007;50:34–41. doi: 10.1016/j.annemergmed.2006.10.020. [DOI] [PubMed] [Google Scholar]
  • 17.Giamarellos-Bourboulis E.J., Giannopoulou P., Grecka P., Voros D., Mandragos K., Giamarellou H. Should procalcitonin be introduced in the diagnostic criteria for the systemic inflammatory response syndrome and sepsis? J Crit Care. 2004;19:152–157. doi: 10.1016/j.jcrc.2004.07.001. [DOI] [PubMed] [Google Scholar]
  • 18.Tenover F.C. Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin Infect Dis. 2007;44:418–423. doi: 10.1086/510684. [DOI] [PubMed] [Google Scholar]
  • 19.Davis B.H. Improved diagnostic approaches to infection/sepsis detection. Expert Rev Mol Diagn. 2005;5:193–207. doi: 10.1586/14737159.5.2.193. [DOI] [PubMed] [Google Scholar]
  • 20.Yip T.T., Cho W.C., Cheng W.W., Chan J.W.M., Ma V.W.S., Yip T.T. Application of ProteinChip array profiling in serum biomarker discovery for patients suffering from severe acute respiratory syndrome. Methods Mo Biol. 2007;382:313–331. doi: 10.1007/978-1-59745-304-2_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Suttorp N. Changing population and future trends in the management of serius infections. Disponible en: www.infection academy.org
  • 22.Peterson L.R., Dalhoff A. Towards targeted prescribing: will the cure for antimicrobial resistance by sepecific, directed therapy throught improved diagnostic testing? J Antimicrob Chemother. 2004;53:902–905. doi: 10.1093/jac/dkh187. [DOI] [PubMed] [Google Scholar]
  • 23.Zhang W.Z., Han T.Q., Tang Y.Q., Zhang S.D. Rapid detection of sepsis complicating acute necrotizing pancreatitis using polymerase chain reaction. World J Gastroenterol. 2001;7:289–292. doi: 10.3748/wjg.v7.i2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Huletsky A., Giroux R., Rossbach V., Gagnon M., Vaillancourt M., Bernier M. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol. 2004;42:1875–1884. doi: 10.1128/JCM.42.5.1875-1884.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Poppert S., Essig A., Stoehr B., Steingruber A., Wirths B., Juretschko S. Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. J Clin Microbiol. 2005;43:3390–3397. doi: 10.1128/JCM.43.7.3390-3397.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Makhoul I.R., Smolkin T., Sujov P., Kassis I., Tamir A., Shalginov R. PCRbased diagnosis of neonatal staphylococcal bacteremias. J Clin Microbiol. 2005;43:4823–4825. doi: 10.1128/JCM.43.9.4823-4825.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Kollef M., Sharpless L., Vlasnik J., Pasque C., Murphy D., Fraser V.J. Inadequate antimicrobial treatment of infections. Chest. 1999;115:462–474. doi: 10.1378/chest.115.2.462. [DOI] [PubMed] [Google Scholar]
  • 28.Espy M.J., Uhl J.R., Sloan L.M., Buckwalter S.P., Jones M.F., Vetter E.A. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19:165–256. doi: 10.1128/CMR.19.1.165-256.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Klausegger A., Hell M., Berger A., Zinober K., Baier S., Jones N. Gram type-specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria. J Clin Microbiol. 1999;37:464–466. doi: 10.1128/jcm.37.2.464-466.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ruppenthal R.D., Souza Pereira F., Cantarelli V.V., Silveira Schrank I. Application of broad-range bacterial PCR amplification and direct sequencing on the diagnosis of neonatal sepsis. Braz J Microbiol. 2005;36:29–35. [Google Scholar]
  • 31.Harbarth S., Garbino J., Pugin J., Romand J.A., Lew D., Pittet D. Inapropiate inicial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe spesis. Am J Med. 2003;115:529–535. doi: 10.1016/j.amjmed.2003.07.005. [DOI] [PubMed] [Google Scholar]
  • 32.Costa J. Reacción en cadena de la polimerasa (PCR) a tiempo real. Enferm Infecc Microbiol Clin. 2004;22:299–305. doi: 10.1016/s0213-005x(04)73092-x. [DOI] [PubMed] [Google Scholar]
  • 33.Emrich T, Moczko M, Lohmann S, Mayr J, Stockinger H, Haberhausen G. LightCycler® SeptiFast Test: rapid detection of nosocomial pathogens by real-time PCR. 16th European Congress of Clinical Microbiology and Infectious Diseases. Nice, France, April 1-4 2006. Abstract: p962.
  • 34.Lehmann LE, Hunfeld KP, Emrich T, Haberhausen G, Wissing H, Hoeft A, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Medical Microbiology and Immunology. Berlin/Heidelberg: Editor Springer; 2007. Published online: 16 november 2007. [DOI] [PubMed]
  • 35.Eigner U., Weizenegger M., Fahr A.M., Witte W. Evaluation of a rapid direct assay for identification of bacteria and the mecA and van genes from positive testing blood cultures. J Clin Microbiol. 2005;43:5256–5262. doi: 10.1128/JCM.43.10.5256-5262.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Enfermedades Infecciosas Y Microbiologia Clinica are provided here courtesy of Elsevier

RESOURCES