Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
editorial
. 2016 Jun 10;105(4):1243–1246. doi: 10.1016/0016-5085(93)90973-G

Reduce, reuse, and recycle: Shedding light on shedding cells

Ken Croitoru 1, Robert H Riddell 1,*
PMCID: PMC7130285  PMID: 8405871

The content is available as a PDF (690.3 KB).

References

  • 1.Iwanaga T, Han H, Adachi K, Fujita T. A novel mechanism for disposing of effete epithelial cells in the small intestine of guinea pigs. Gastroenterology. 1993;105:1089–1097. doi: 10.1016/0016-5085(93)90953-a. [DOI] [PubMed] [Google Scholar]
  • 2.Carson DA, Ribiero JM. Apoptosis and disease. Lancet. 1993;341:1251–1254. doi: 10.1016/0140-6736(93)91154-e. [DOI] [PubMed] [Google Scholar]
  • 3.Leuchtenberger C. Cytoplasmic “inclusion bodies” containing desoxyribose nucleic acid (DNA) in cells of human rectal polyps. Lab Invest. 1954;3:132–142. [PubMed] [Google Scholar]
  • 4.Glucksmann A. Cell deaths in normal vertebrate ontogeny. Biol Rev. 1951;26:239–257. doi: 10.1111/j.1469-185x.1951.tb00774.x. [DOI] [PubMed] [Google Scholar]
  • 5.Lee FD. Importance of apoptosis in the histopathology of drug related lesions in the large intestine. J Clin Pathol. 1993;46:118–122. doi: 10.1136/jcp.46.2.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Pascal RR, Kaye GI, Lane N. Colonic pericrypt fibroblast sheath: replication, migration and cytodifferentiation of a mesenchymal cell system in adult tissue. I. Autoradiographic studies of normal rabbit colon. Gastroenterology. 1968;54:835–851. [PubMed] [Google Scholar]
  • 7.Parker FG, Barnes EN, Kaye GI. The pericrypt fibroblast sheath. IV. Replication, migration and differentiation of the subepithelial fibroblast of the crypt and villus of the rabbit jejunum. Gastroenterology. 1974;67:607–621. [PubMed] [Google Scholar]
  • 8.Marsh MM, Trier JS. Morphology and cell proliferation of the subepithelial fibroblasts in adult mouse jejunum. I Structural features. Gastroenterology. 1974;67:622–635. [PubMed] [Google Scholar]
  • 9.Maskens AP, Rahier JR, Meerssemann FP, Dujardin-Loits R-M, Haot JG. Cell proliferation of pericrypt fibroblasts in the rat colonic mucosa. Gut. 1979;20:775–779. doi: 10.1136/gut.20.9.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Neal JV, Potten CS. Description and basic cell kinetics of the murine pericrypt fibroblast sheath. Gut. 1981;22:19–24. doi: 10.1136/gut.22.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Fichtelius KE. The gut epithelium-A first level lymphoid organ? Exp Cell Res. 1968;49:87–104. doi: 10.1016/0014-4827(68)90522-3. [DOI] [PubMed] [Google Scholar]
  • 12.Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat. 1974;141:537–562. doi: 10.1002/aja.1001410407. [DOI] [PubMed] [Google Scholar]
  • 13.Meader RD, Landers DF. Electron and light microscopic observations on relationships between lymphocytes and intestinal epithelium. Am J Anat. 1966;121:763–774. doi: 10.1002/aja.1001210318. [DOI] [PubMed] [Google Scholar]
  • 14.Lawn AM, Rose ME. Mucosal transport of Eimeria Tenella in the cecum of the chicken. J Parasitol. 1982;68:1117–1123. [PubMed] [Google Scholar]
  • 15.Fernando MA, Lawn AM, Rose ME, Al-Attar MA. Invasion of chicken caecal and intestinal lamina propria by crypt epithelial cells infected with coccidia. Parasitology. 1983;86:391–398. doi: 10.1017/s0031182000050587. [DOI] [PubMed] [Google Scholar]
  • 16.Croitoru K, Ernst PB. Leukocytes in the intestinal epithelium: An unusual immunologic compartment revisited. Regional Immunol. 1992;4:63–69. [PubMed] [Google Scholar]
  • 17.Mayrhofer G. Physiology of the intestinal immune system. In: Newby TJ, Stokes CR, editors. Local immune responses of the gut. 1st ed. CRC; Boca Raton: 1984. pp. 1–96. [Google Scholar]
  • 18.Goodman T, Lefrancois L. Expression of the gamma-delta T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature. 1988;333:855–858. doi: 10.1038/333855a0. [DOI] [PubMed] [Google Scholar]
  • 19.Viney JL, MacDonald TT, Kilshaw PJ. T-cell receptor expression in intestinal intra-epithelial lymphocyte subpopulations of normal and athymic mice. Immunology. 1989;66:583–587. [PMC free article] [PubMed] [Google Scholar]
  • 20.Janeway CA, Jones B, Hayday A. Specificity and function of T cells bearing gamma/delta receptors. Immunol Today. 1988;9:73–76. doi: 10.1016/0167-5699(88)91267-4. [DOI] [PubMed] [Google Scholar]
  • 21.Tagliabue A, Befus AD, Clark DA, Bienenstock J. Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J Exp Med. 1982;155:1785–1796. doi: 10.1084/jem.155.6.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Lefrancois L, Goodman T. In vivo modulation of cytolytic activity and Thy-1 expression in TCR-gamma/delta intraepithelial lymphocytes. Science. 1989;243:1716–1718. doi: 10.1126/science.2564701. [DOI] [PubMed] [Google Scholar]
  • 23.Goodman T, Lefrancois L. Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J Exp Med. 1989;170:1569–1581. doi: 10.1084/jem.170.5.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Carman PS, Ernst PB, Rosenthal KL, Clark DA, Befus AD, Bienenstock J. Intraepithelial leukocytes contain a unique subpopulation of NK-like cytotoxic cells active in the defense of gut epithelium to enteric murine coronavirus. J Immunol. 1986;136:1548–1553. [PubMed] [Google Scholar]
  • 25.Offit PA, Dudzik KI. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J Virol. 1989;63:3507–3512. doi: 10.1128/jvi.63.8.3507-3512.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.London SD, Cebra JJ, Rubin DH. Intraepithelial lymphocytes contain virus-specific, MHC-restricted cytotoxic precursors after gut mucosal immunization with Reovirus serotype 1/Lang. Regional Immunol. 1989;2:98–102. [PubMed] [Google Scholar]
  • 27.Ernst PB, Clark DA, Rosenthal KL, Befus AD, Bienenstock J. Detection and characterization of cytotoxic T lymphocyte precursors in the murine intestinal intraepithelial leukocyte population. J Immunol. 1986;136:2121–2126. [PubMed] [Google Scholar]
  • 28.MacDonald TT, Dillon SB. Chemical mediators of cellular communication. In: Heyworth MF, Jones AL, editors. Immunology of the gastrointestinal tract and liver. Raven; New York: 1988. pp. 47–64. [Google Scholar]
  • 29.Taguchi T, McGhee JR, Coffman RL, Beagley KW, Eldridge JH, Takatsu K, Kiyono H. Analysis of Th1 and Th2 cells in murine gut-associated tissues: Frequencies of CD4+ and CD8+ T cells that secrete IFN-gamma and IL-5. J Immunol. 1990;145:68–77. [PubMed] [Google Scholar]
  • 30.Fujihashi K, Taguchi T, McGhee JR, Eldridge JH, Bruce MG, Green DR, Singh B, Kiyono H. Regulatory function for murine intraepithelial lymphocytes: Two subsets of CD3+, T cell receptor-1+ intraepithelial lymphocyte T cells abrogate oral tolerance. J Immunol. 1990;145:2010–2019. [PubMed] [Google Scholar]
  • 31.Barrett TA, Gajewski TF, Danielpour D, Chang EB, Beagley KW, Bluestone JA. Differential function of intestinal intraepithelial lymphocyte subsets. J Immunol. 1992;149:1124–1130. [PubMed] [Google Scholar]
  • 32.Vandevoorde V, Haegeman G, Fiers W. TNF-mediated IL6 gene expression and cytotoxicity are co-inducible in TNF-resistant L929 cells. FEBS Lett. 1992;302:235–238. doi: 10.1016/0014-5793(92)80449-q. [DOI] [PubMed] [Google Scholar]
  • 33.Bleicher PA, Balk SP, Hagen SJ, Blumberg RS, Flotte TJ, Terhorst C. Expression of murine CD1 on gastrointestinal epithelium. Nature. 1990;250:679–682. doi: 10.1126/science.1700477. [DOI] [PubMed] [Google Scholar]
  • 34.Hershberg R, Eghtesady P, Sydora B, Brorson K, Cheroutre H, Modlin R, Kronenberg M. Vol. 87. 1990. Expression of the thymus leukemia antigen in mouse intestinal epithelium; pp. 9727–9731. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA. Recognition of cluster of differentiation 1 antigens by human CD4- CD8- cytolytic T lymphocytes. Nature. 1989;341:447–450. doi: 10.1038/341447a0. [DOI] [PubMed] [Google Scholar]
  • 36.Balk SP, Ebert EC, Blumenthal RL, McDermott FV, Wucherpfennig KW, Landau SB, Blumberg RS. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science. 1991;253:1411–1415. doi: 10.1126/science.1716785. [DOI] [PubMed] [Google Scholar]
  • 37.Cerf-Bensussan N, Schneeberger E, Bhan AK. Immunohistologic and immunoelectron microscopic characterization of the mucosal lymphocytes of human small intestine by the use of monoclonal antibodies. J Immunol. 1983;130:2615–2622. [PubMed] [Google Scholar]
  • 38.Nagler-Anderson C, McNair LA, Cradock A. Self-reactive, T cell receptor-d+, lymphocytes from the intestinal epithelium of weaning mice. J Immunol. 1992;149:2315–2322. [PubMed] [Google Scholar]
  • 39.Rocha B, Vassalli P, Guy-Grand D. The Vβ repertoire of mouse gut homodimeric a CD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J Exp Med. 1991;173:483–486. doi: 10.1084/jem.173.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Barrett TA, Delvy ML, Kennedy DM, Lefrancois L, Matis LA, Dent AL, Hedrick SM, Bluestone JA. Mechanisms of self-tolerance of γ/gd T cells in epithelial tissue. J Exp Med. 1992;175:65–70. doi: 10.1084/jem.175.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Poussier P, Edouard P, Lee C, Binnie M, Julius M. Thymus-independent development and negative selection of T cells expressing T cell receptor α/β in the intestinal epithelium: Evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J Exp Med. 1992;176:187–199. doi: 10.1084/jem.176.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Barrett Ta, Tatsumi Y, Bluestone JA. Tolerance of T cell receptor gamma/delta cells in the intestine. J Exp Med. 1993;177:1755–1762. doi: 10.1084/jem.177.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Deem RL, Shanahan F, Targan SR. Triggered human mucosal T cells release tumour necrosis factor-alpha and interferon-gamma which kill human colonic epithelial cells. Clin Exp Immunol. 1991;83:79–84. doi: 10.1111/j.1365-2249.1991.tb05592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Guy-Grand D, Cerf-Bensussan N, Malissen B, Malassis-Seris M, Briottet C, Vassalli P. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: A role for the gut epithelium in T cell differentiation. J Exp Med. 1991;173:471–481. doi: 10.1084/jem.173.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sydora BC, Mixter PF, Holcombe HR, Eghtesady P, Williams K, Amaral MC, Nel A, Kronenberg M. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J Immunol. 1993;150:2179–2191. [PubMed] [Google Scholar]
  • 46.Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med. 1992;176:1521–1529. doi: 10.1084/jem.176.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Savilhati E, Arato A, Verkasalo M. Intestinal γ/δ receptor-bearing T lymphocytes in celiac disease and inflammatory diseases in children. Constant increase in celiac disease. Pediatr Res. 1990;28:579–581. doi: 10.1203/00006450-199012000-00005. [DOI] [PubMed] [Google Scholar]

Articles from Gastroenterology are provided here courtesy of Elsevier

RESOURCES