Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 11;53(2):152–159. doi: 10.1016/0014-4800(90)90039-G

Bovine coronavirus antigen in the host cell plasmalemma

HR Payne 1,2, J Storz 1, WG Henk 3
PMCID: PMC7130403  PMID: 2261945

Abstract

Expression of bovine coronavirus (BCV) antigen in the plasmalemma of epithelioid human rectal tumor (HRT-18) and fibroblastic bovine fetal spleen (BFS) cell lines was traced by immunofluorescence and immunoelectron microscopy facilitated by colloidal gold. Cytoplasmic fluorescence was first observed at 12 hr postinfection (h.p.i) in infected HRT-18 cultures. This fluorescence coincided with the appearance of cell surface antigen reacting with colloidal gold-labeled antibodies to BCV antigens. At 24 h.p.i the amount of viral antigens at the surface of HRT-18 had increased, although cytoplasmic fluorescence remained constant. Infected BFS cells but not HRT-18 cells formed polykaryons when incubated in the presence of trypsin. One viral antigen in the plasma membrane of BFS cells was thus identified as the S glycoprotein with a fusion domain. In contrast to HRT-18 cells, the overall amount of BCV antigens at the surface of BFS cells remained constant after the onset of fusion. Analysis of the labeling characteristics established that the goldmarked-sites represented de novo expression of BCV antigen in the plasma membrane of infected cells.

References

  1. Cavanagh D., Brian D.A., Enuanes L., Holmes K.V., Lai M.M., Lande H., Siddel S.G., Spaan W., Tagushi F., Talbot P.J. Recommendation of the coronavirus study group for the momenclature of the structural proteins, mRNAs, and genes of coronaviruses. Virology. 1990;176:306–307. doi: 10.1016/0042-6822(90)90259-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (Strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deregt D., Sabara M., Babiuk L.A. Structural proteins of bovine coronavirus and their intracellular processing. J. Gen. Virol. 1987;68:1863–2877. doi: 10.1099/0022-1317-68-11-2863. [DOI] [PubMed] [Google Scholar]
  4. Doughri A.M., Storz J. Light and ultrastructural pathological changes in intestinal coronavirus infection of newborn calves. Zentralbl. Veterinaermed. Reihe B. 1977;24:367–385. doi: 10.1111/j.1439-0450.1977.tb01011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doughri A.M., Storz J., Hajer I., Fernando H.S. Morphology and morphogenesis of a coronavirus infecting intestinal epithelial cells of newborn calves. Exp. Mol. Pathol. 1976;25:355–370. doi: 10.1016/0014-4800(76)90045-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holmes K.V., Behnke J.N. Evolution of a coronavirus during persistent infection in vitro. Adv. Exp. Med. Biol. 1982;142:287–299. doi: 10.1007/978-1-4757-0456-3_23. [DOI] [PubMed] [Google Scholar]
  7. Holmes K.V., Doller E.W., Behnke J.N. Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin. Adv. Exp. Med. Biol. 1982;142:133–142. doi: 10.1007/978-1-4757-0456-3_11. [DOI] [PubMed] [Google Scholar]
  8. King B., Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. King B., Potts B.J., Brian D.A. Bovine coronavirus hemagglutinin protein. Virus Res. 1985;2:53–59. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laporte J., L'Haridon R., Bobulesco P. Vol. 90. 1979. In vitro culture of bovine enteritic coronavirus (BEC) pp. 99–102. (Inst. Nat. Sante Rech. Med. Colloq.). [Google Scholar]
  11. Lapps W., Hogue B.G., Brian D.A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mebus C.A., Stair E.L., Rhodes M.B., Twiehaus M.J. Neonatal calf diarrhea: Propagation, attenuation, and characteristics of a corona-like agent. Amer. J. Vet. Res. 1973;34:145–150. [PubMed] [Google Scholar]
  13. Mebus C.A., Rhodes M.B., Underdahl N.R. Neonatal calf diarrhea caused by a virus that induces villous epithelial cell syncytia. Amer. J. Vet. Res. 1978;39:1223–1228. [PubMed] [Google Scholar]
  14. Mizzen L., Cheley S., Rao M., Wolf R., Anderson R. Fusion resistance and decreased infectability as major host determinants of coronavirus persistence. Virology. 1983;128:407–417. doi: 10.1016/0042-6822(83)90266-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Payne H.R., Storz J. Analysis of cell fusion induced by bovine coronavirus infection. Arch. Virol. 1989;103:27–34. doi: 10.1007/BF01319806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spurr A.R. A low viscosity embedding medium for electron microscopy. J. Ultrastruct. Res. 1969;26:31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  17. St. Cyr-Coats K., Storz J. Bovine coronavirus-induced cytopathic expression and plaque formation: Host cell and virus strain determine trypsin dependence. J. Vet. Med. Biol. 1988;35:48–56. doi: 10.1111/j.1439-0450.1988.tb00465.x. [DOI] [PubMed] [Google Scholar]
  18. St. Cyr-Coats K., Payne H.R., Storz J. The influence of the host cell and trypsin treatment on bovine coronavirus infectivity. J. Vet. Med. Biol. 1988;35:752–759. doi: 10.1111/j.1439-0450.1988.tb00555.x. [DOI] [PubMed] [Google Scholar]
  19. St. Cyr-Coats K., Storz J., Hussain K.A., Schnorr K.L. Structural proteins of bovine coronavirus strain L9: Effects of the host cell and trypsin treatment. Arch. Virol. 1988;103:35–43. doi: 10.1007/BF01319807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Storz J., Rott R., Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infect. Immun. 1981;31:1214–1222. doi: 10.1128/iai.31.3.1214-1222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1982;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two differet 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tompkins W.A.F., Watrach A.M., Schmale J.D., Schultz R.M., Harris J.A. Cultural and antigenic properties of newly established cell strains from adenocarcinomas of human colon and rectum. J. Natl. Cancer Inst. 1974;52:101–106. doi: 10.1093/jnci/52.4.1101. [DOI] [PubMed] [Google Scholar]
  24. Tooze J., Tooze S.A. Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: Virus budding is restricted to the Golgi region. Eur. Mol. Biol. Org. J. 1985;37:203–212. [PubMed] [Google Scholar]
  25. Vlasak R., Lyntjes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virology. 1988;62:4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]

Articles from Experimental and Molecular Pathology are provided here courtesy of Elsevier

RESOURCES