Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jun 17;118(2):345–352. doi: 10.1016/0042-6822(82)90354-3

Equine arteritis virus-infected cells contain six polyadenylated virus-specific RNAs

Mario F Van Berlo 1, Marian C Horzinek 1, Bernard AM Van der Zeijst 1,1
PMCID: PMC7130458  PMID: 6283728

Abstract

The kinetics of equine arteritis virus growth and virus-specific RNA synthesis at 40° were determined in BHK-21 cells. Maximum titers of infectious virus (∼107 PFU/ml) were observed at 12 hr p.i., while incorporation of [3H]uridine into virus-specific RNA became detectable at 4 hr p.i. and increased to reach a maximum rate at 8 hr p.i. This RNA was labeled between 2.5 and 7 hr p.i. and isolated from infected cells. About 44% bound to oligo(dT)-cellulose; this material was denatured using glyoxal and dimethyl sulfoxide and analyzed by electrophoresis in a 1% agarose-urea gel. Six virus-specific RNA species were found having the following molecular weights: 4.3 × 106 (RNA1), 1.3 × 106 (RNA2), 0.9 × 106 (RNA3), 0.7 × 106 (RNA4), 0.3 × 106 (RNA5), and 0.2 × 106 (RNA6). RNA1 comigrated with the viral genome. Artifacts caused by defective interfering particles or breakdown of RNA were excluded. Subsequently, the target sizes of the templates for the synthesis of the genome-sized RNA and the five subgenomic RNAs were determined by uv transcription mapping. Infected cells were irradiated at 6.5 hr p.i. The effect o of reasing uv doses on the RNA synthesis was determined by quantitation of the individual RNAs after separation by agarose gel electrophoresis. The uv target sizes calculated for the templates for RNAs 2–5 were very close to the physical size of RNA1. The target size of the template of RNA6 was smaller (2.8 × 106 daltons), although much greater than its physical size. The data are consistent with a model in which the individual RNAs are derived from a larger precursor RNA molecule. The consequences of these findings for the taxonomy of Togaviridae are discussed.

References

  1. Abraham G., Banerjee A.K. Vol. 73. 1976. Sequential transcription of the genes of vesicular stomatitis virus; pp. 1504–1508. (Proc. Nat Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball L.A. Transcriptional mapping of vesicular stomatitis virus in vivo. J. Virol. 1977;21:411–414. doi: 10.1128/jvi.21.1.411-414.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinton M.A. Non-arbo togaviruses. In: Schlesinger R.W., editor. The Togaviruses: Biology, Structure and Replication. Academic Press; New York: 1980. pp. 623–666. [Google Scholar]
  4. Cleaves G.R., Ryan T.C., Schlesinger R.W. Identification and characterization of type 2 Dengue virus replicative intermediate and replicative form RNAs. Virology. 1981;111:73–83. doi: 10.1016/0042-6822(81)90654-1. [DOI] [PubMed] [Google Scholar]
  5. Doll E.R., Bryans J.T., McCollum W.H., Crowe M.E.W. Isolation of a filterable agent causing arteritis of horses and abortion by mares. Its differentiation from the equine abortion (influenza) virus. Cornell Vet. 1957;47:3–41. [PubMed] [Google Scholar]
  6. Horzinek M.C. Academic Press; London: 1981. Non-arthropod-borne Togaviruses. [Google Scholar]
  7. Hyllseth B. A plaque assay of equine arteritis virus in BHK-21 cells. Arch. Ges. Virusforsch. 1969;28:26–33. doi: 10.1007/BF01250842. [DOI] [PubMed] [Google Scholar]
  8. Jacobs L., Spaan W.J.M., Horzinek M.C., Van Der Win B.A.M. Synthesis of subgenomic mRNAs of mouse hepatitis virus is initiated independently: Evidence from uv transcription mapping. J. Virol. 1981;39:401–406. doi: 10.1128/jvi.39.2.401-406.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones T.C., Doll E.R., Bryans J.T. The lesions of equine viral arteritis. Cornell Vet. 1957;47:52–68. [PubMed] [Google Scholar]
  10. Kääriäinen L., Söderlund H. Structure and replication of alpha-viruses. Curr. Top. Microbiol. Immunol. 1978;82:15–69. doi: 10.1007/978-3-642-46388-4_2. [DOI] [PubMed] [Google Scholar]
  11. McMaster G.K., Carmichael G.G. Vol. 74. 1977. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange; pp. 4835–4838. (Proc. Nat Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murphy F.A. Togavirus morphology and morphogenesis. In: Schlesinger R.W., editor. The Togaviruses: Biology, Structure and Replication. Academic Press; New York: 1980. pp. 241–316. [Google Scholar]
  13. Porterfield J.S., Casals J., Chumakov M.P., Gaidamovich S.Ya., Hannoun C., Holmes I.H., Horzinek M.C., Mussgay M., Oker-Blom N., Russel P.K., Trent D.W. Togaviridae. Intervirology. 1978;9:129–148. doi: 10.1159/000148930. [DOI] [PubMed] [Google Scholar]
  14. Porterfield J.S. Antigenic characteristics and classification of togaviridae. In: Schlesinger R.W., editor. The Togaviruses, Biology, Structure, Replication. Academic Press; New York: 1980. pp. 13–46. [Google Scholar]
  15. Rottier P.J.M., Spaan W.J.M., Horzinek M.C., Van Der Zeijst B.A.M. Translation of three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes. J. Virol. 1981;38:20–26. doi: 10.1128/jvi.38.1.20-26.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sauerbier W., Hercules K. Gene and transcription unit mapping by radiation effects. Annu. Rev. Genet. 1978;12:329–363. doi: 10.1146/annurev.ge.12.120178.001553. [DOI] [PubMed] [Google Scholar]
  17. Simmons D.T., Strauss J.H. Replication of Sindbis virus. I. Relative size and genetic content of 26S and 498 RNA. J. Mol. Biol. 1972;71:599–613. [PubMed] [Google Scholar]
  18. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., Van Der Zeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy I. Identification and characterization of virus-specified RNA. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Svitkin Y.V., Ugarova T.Y., Chernovskaya T.V., Lyapustin V.N., Lashkevich V.A., Agol V.I. Translation of tick-borne encephalitis virus (flavivirus) genome in vitro: Synthesis of two structural polypeptides. Virology. 1981;110:26–34. doi: 10.1016/0042-6822(81)90004-0. [DOI] [PubMed] [Google Scholar]
  21. Testa D., Chanda P.K., Banerjee A.K. Unique mode of transcription in vitro by vesicular stomatitis virus. Cell. 1980;21:267–275. doi: 10.1016/0092-8674(80)90134-8. [DOI] [PubMed] [Google Scholar]
  22. Van Berlo M.F., Horzinek M.C., Van Der Zeijst B.A.M. Temperature-sensitive mutants of equine arteritis virus. J. Gen. Virol. 1980;49:97–104. doi: 10.1099/0022-1317-49-1-97. [DOI] [PubMed] [Google Scholar]
  23. Van Der Zeijst B.A.M., Horzinek M.C., Moennig V. The genome of equine arteritis virus. Virology. 1975;68:418–425. doi: 10.1016/0042-6822(75)90283-4. [DOI] [PubMed] [Google Scholar]
  24. Wege H., Siddell S., Sturm M., Ter Meulen V. Coronavirus JHM: Characterization of intracellular virus RNA. J. Gen. Virol. 1981;54:213–217. doi: 10.1099/0022-1317-54-1-213. [DOI] [PubMed] [Google Scholar]
  25. Wildy P. Vol. 5. S Karger; Basel: 1971. Classification and nomenclature of viruses. First report of the International Committee on Nomenclature of Viruses; pp. 1–81. (Monogr. Virol.). [Google Scholar]
  26. Zeegers J.J.W., Van Der Zeijst B.A.M., Horzinek M.C. The structural proteins of equine arteritis virus. Virology. 1976;73:200–205. doi: 10.1016/0042-6822(76)90074-x. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES