Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 23;177(2):646–656. doi: 10.1016/0042-6822(90)90530-5

Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups

Ralph S Baric ∗,1, Kaisong Fu , Mary C Schaad , Stephen A Stohlman
PMCID: PMC7130460  PMID: 2164728

Abstract

MHV-A59 temperature-sensitive mutants, representing one RNA+ and five RNA complementation groups, were isolated and characterized by genetic recombination techniques. Maximum recombination frequencies occurred under multiplicities of infection greater than 10 each in which 99.99% of the cells were co-infected. Recombination frequencies between different is mutants increased steadily during infection and peaked late in the virus growth cycle. These data suggest that recombination is a late event in the virus replication cycle. Recombination frequencies were also found to range from 63 to 20,000 times higher than the sum of the spontaneous reversion frequencies of each is mutant used in the cross. Utilizing standard genetic recombination techniques, the five RNA complementation groups of MHV-A59 were arranged into an additive, linear, genetic map located at the 5′ end of the genome in the 23-kb polymerase region. These data indicate that at least five distinct functions are encoded in the MHV polymerase region which function in virus transcription. Moreover, using well-characterized is mutants the recombination frequency for the entire 32-kb MHV genome was found to approach 25% or more. This is the highest recombination frequency described for a nonsegmented, linear, plus-polarity RNA virus.

References

  1. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature (London) 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker S.C., Shieh C.-K., Soe L.H., Chang M.F., Vannier D.M., Lai M.M.C. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J. Virol. 1989;63:3693–3699. doi: 10.1128/jvi.63.9.3693-3699.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baric R.S., Stohlman S.A., Lai M.M.C. Characterization of replicative intermediate RNA of mouse hepatitis virus: Presence of leader RNA sequences on nascent chains. J. Virol. 1983;48:633–640. doi: 10.1128/jvi.48.3.633-640.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baric R.S., Stohlman S.A., Razavi M.K., Lai M.M.C. Characterization of leader-related small RNAs in coronavirus-infected cells: Further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–33. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baric R.S., Shieh C.-K., Stohlman S.A., Lai M.M.C. Analysis of intracellular small RNAs of mouse hepatitis virus: Evidence for discontinuous transcription. Virology. 1987;156:342–354. doi: 10.1016/0042-6822(87)90414-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baric R.S., Nelson G.W., Fleming J.O., Deans R.J., Keck J.G., Casteel N., Stohlman S.A. Interactions between coronavirus nucleocapsid protein and viral RNAs: Implications for viral transcription. J. Virol. 1988;62:4280–4287. doi: 10.1128/jvi.62.11.4280-4287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Compton S.R., Rogers D.B., Holmes K.V., Fertsch D., Remenick J., McGowan J.J. In vitro replication of mouse hepatitis virus strain A59. J. Virol. 1987;61:1814–1820. doi: 10.1128/jvi.61.6.1814-1820.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper P.D. A genetic map of poliovirus temperature-sensitive mutants. Virology. 1968;35:584–596. doi: 10.1016/0042-6822(68)90287-0. [DOI] [PubMed] [Google Scholar]
  9. Cooper P.D., Steiner-Pryor A., Scotti P.D., Delong D. On the nature of poliovirus genetic recombinants. J. Gen. Virol. 1974;23:41–49. doi: 10.1099/0022-1317-23-1-41. [DOI] [PubMed] [Google Scholar]
  10. Cooper P.D., Gleissler E., Tannock G.A. Attempts to extend the genetic map of poliovirus temperature-sensitive mutants. J. Gen. Virol. 1975;29:109–120. doi: 10.1099/0022-1317-29-1-109. [DOI] [PubMed] [Google Scholar]
  11. Cooper P.D. Vol. 9. Plenum; New York: 1977. Genetics of picornaviruses; pp. 133–208. (Comprehensive Virology). [Google Scholar]
  12. Denison M.R., Perlman S. Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. J. Virol. 1986;60:12–18. doi: 10.1128/jvi.60.1.12-18.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Denison M., Perlman S. Identification of putative polymerase gene product in cells infected with murine coronavirus A59. Virology. 1987;157:565–568. doi: 10.1016/0042-6822(87)90303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Epstein R.H., Bolle A., Steinberg C.M., Kellenberger C., Boyde La Tour E., Chevalley R., Edgar R.S., Musman M., Denhardt G.H., Leilausis A. Vol. 28. 1963. Physiological studies of conditional lethal mutations of bacteriophage T4D; pp. 374–394. (Cold Spring Harbor Symp. Quant. Biol.). [Google Scholar]
  15. Fenner R. The genetics of animal viruses. Annu. Rev. Microbiol. 1970;24:297–334. doi: 10.1146/annurev.mi.24.100170.001501. [DOI] [PubMed] [Google Scholar]
  16. Fields B.N., Joklik W.K. Isolation and preliminary genetic and biochemical characterization of temperature sensitive mutants of reovirus. Virology. 1969;37:335–342. doi: 10.1016/0042-6822(69)90217-7. [DOI] [PubMed] [Google Scholar]
  17. Fields B.N. Genetics of Reoviruses. Curr. Top. Microbiol. Immunol. 1981;91:1–24. doi: 10.1007/978-3-642-68058-8_1. [DOI] [PubMed] [Google Scholar]
  18. Ghendon Y.Z. Conditional-lethal mutants of animal viruses. Prog. Med. Virol. 1972;14:68–122. [Google Scholar]
  19. Hahn Y.S., Strauss E.G., Strauss J.H. Mapping of RNA− temperature sensitive mutants of sindbis virus: Assignment of complementation groups A, B, and G to nonstructural proteins. J. Virol. 1989;63:3142–3150. doi: 10.1128/jvi.63.7.3142-3150.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hayes W. 2nd ed. Blackwell; Oxford: 1968. The Genetics of Bacteria and Their Viruses. [Google Scholar]
  21. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  22. Keck J.G., Stohlman S.A., Soe L.H., Making S., Lai M.M.C. Multiple recombination sites at the 5′ end of the murine coronavirus RNA. Virology. 1987;156:331–341. doi: 10.1016/0042-6822(87)90413-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Keck J.G., Hogue B.G., Brian D.A., Lai M.M.C. Temporal regulation of bovine coronavirus RNA synthesis. Virus. Res. 1988;9:343–356. doi: 10.1016/0168-1702(88)90093-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keck J.G., Matsushima G.K., Makino S., Fleming J.O., Vannier D.M., Stohlman S.A., Lai M.M.C. In vivo RNA-RNA recombination of coronavirus in mouse brain. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keck J.G., Soe L.H., Makino S., Stohlman S.A., Lai M.M.C. RNA recombination of murine coronaviruses: Recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2. J. Virol. 1988;62:1989–1998. doi: 10.1128/jvi.62.6.1989-1998.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. King A.M., McCahon D., Slade W.R., Newman J.W.I. Recombination in RNA. Cell. 1982;29:921–928. doi: 10.1016/0092-8674(82)90454-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. King A.M.Q., McCahon D., Saunders K., Newman J.W.I., Slade W.R. Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus. Virus Res. 1985;3:373–384. doi: 10.1016/0168-1702(85)90437-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. King A.M.Q., Ortlepp S.A., Newman J.W., McCahon D. Genetic recombination in RNA viruses. In: Rowlands R.J., Mayo M.A., Mahy B.N., editors. The Molecular Biology of the Positive Strand RNA Viruses. Academic Press; London: 1987. pp. 129–152. [Google Scholar]
  29. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Koolen M.J.M., Osterhaus A.D.M.E., Van Steenis G., Horzinek M.C., Van der Zeust B.A.M. Temperature-sensitive mutants of mouse hepatitis virus strain A59: Isolation, characterization and neuropathogenic properties. Virology. 1983;125:393–402. doi: 10.1016/0042-6822(83)90211-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lai M.M.C., Baric R.S., Makino S., Keck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. Recombination between nonsegmented RNA genomes of murine coronavirus. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lake J.R., Priston R.A.J., Slade W.R. A genetic recombination map of foot-and-mouth disease virus. J. Gen. Virol. 1975;27:355–367. doi: 10.1099/0022-1317-27-3-355. [DOI] [PubMed] [Google Scholar]
  33. Leibowitz J.L., De Vries J.R., Haspel M.V. Genetic analysis of murine hepatitis virus strain JHM. J. Virol. 1982;42:1080–1087. doi: 10.1128/jvi.42.3.1080-1087.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Luytjes W., Bredenbeek P.J., Noten A.F., Horzinek M.C., Spaan W.J. Sequence of mouse hepatitis virus A59 mRNA2: Indications for RNA-recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mackenzie J.S., Slade W.R., Lake J., Priston R.A., Bisby J., Laing S., Newman J. Temperature-sensitive mutants of foot and mouth disease virus: The isolation of mutants and observations on their properties and genetic recombination. J. Gen. Virol. 1975;27:61–70. doi: 10.1099/0022-1317-27-1-61. [DOI] [PubMed] [Google Scholar]
  36. Makino S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus mRNAs can be freely reassorted: Evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Makino S., Stohlman S.A., Lai M.M.C. High frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:328–334. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Makino S., Fleming J.O., Keck J.G., Stohlman S.A., Lai M.M.C. Vol. 84. 1987. RNA recombination of coronaviruses; localization of neutralizing epitopes and neuropathogenic determinants on the carboxy terminus of peplomers; pp. 6567–6571. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Martin J.P., Koehren F., Rannou J.-J., Kirn A. Temperature sensitive mutants of mouse hepatitis virus type 3(MHV-3): Isolation, biochemical and genetic characterization. Arch. Virol. 1988;100:147–160. doi: 10.1007/BF01487679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mi S., Durbin R., Huang H.V., Rice C.M., Stollar V. Association of the sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology. 1989;170:385–391. doi: 10.1016/0042-6822(89)90429-7. [DOI] [PubMed] [Google Scholar]
  41. Pachuk C.J., Bredenbeck P.J., Zoltick P.W., Spaan W.J.M., Weiss S.R. Molecular cloning of the gene encoding the putative polymerase of mouse hepatitis coronavirus, strain A59. Virology. 1989;171:141–148. doi: 10.1016/0042-6822(89)90520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ritchie D.A. Genetic analysis of animal viruses. Brit. Med. J. 1973;29:947–952. doi: 10.1093/oxfordjournals.bmb.a071015. [DOI] [PubMed] [Google Scholar]
  44. Sawicki D.L., Sawicki S.G., Keranen S., Kaariainen L. Specific sindbis virus coded function for minus strand RNA synthesis. J. Virol. 1981;39:348–358. doi: 10.1128/jvi.39.2.348-358.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sawicki D.L., Sawicki S.G. Functional analysis of the A complementation group mutants of Sindbis HR virus. Virology. 1985;144:20–34. doi: 10.1016/0042-6822(85)90301-0. [DOI] [PubMed] [Google Scholar]
  46. Sawicki S.G., Sawicki D.L. Coronavirus transcription: Subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J. Virol. 1990;64:1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schaad M.C., Stohlman S.A., Egbert J., Lum K., Fu K., Wei T., Baric R.S. Genetics of mouse hepatitis virus transcription: Identification of cistrons which may function in positive and negative strand RNA synthesis. Virology. 1990;177:634–645. doi: 10.1016/0042-6822(90)90529-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schmidt I., Skinner M.A., Siddell S.G. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  49. Scholtissek C., Rhode W., von Hoyningen V.V., Rott R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 1978;87:13–20. doi: 10.1016/0042-6822(78)90153-8. [DOI] [PubMed] [Google Scholar]
  50. Sethna P.B., Hung S.L., Brian D.A. Vol. 86. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons; pp. 5626–5630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Shieh C.-K., Lee H.-J., Yokomori K., La Monica N., Makino S., Lai M.M.C. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 1989;63:3729–3736. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Siddell S. Coronavirus JHM: Coding assignments of subgenomic mRNAs. J. Gen. Virol. 1983;64:113–125. doi: 10.1099/0022-1317-64-1-113. [DOI] [PubMed] [Google Scholar]
  53. Skinner M.A., Siddell S.O. Coronavirus JHM nucleotide sequence of the mRNA that encodes the nucleocapsid protein. Nucleic Acid Res. 1983;11:5045–5054. doi: 10.1093/nar/11.15.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
  55. Skinner M.A., Siddell S.G. Coding sequence of coronavirus MHV-JHM mRNA 4. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-593. [DOI] [PubMed] [Google Scholar]
  56. Soe L.H., Shieh C.K., Baker S.C., Chang M.F., Lai M.M.C. Sequence and translation of the murine coronavirus 5′-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. J. Virol. 1987;61:3968–3976. doi: 10.1128/jvi.61.12.3968-3976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Spaan W.J.M., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  58. Stohlman S.A., Baric R.S., Nelson G.N., Soe L.H., Welter L.M., Deans R.J. Specific interaction between the coronavirus leader RNA and nucleocapsid protein. J. Virol. 1988;62:4288–4295. doi: 10.1128/jvi.62.11.4288-4295.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES