Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;128(2):407–417. doi: 10.1016/0042-6822(83)90266-0

Fusion resistance and decreased infectability as major host cell determinants of coronavirus persistence

Lee Mizzen 1, Steve Cheley 1, Meena Rao 1, Robert Wolf 1, Robert Anderson 1
PMCID: PMC7130467  PMID: 6310865

Abstract

Mouse hepatitis virus persists in cultures of a subline (designated LM-K) of mouse LM cells but produces a lytic infection in L-2 cells. Persistence in the LM-K cells was not accompanied by production of is mutants or of soluble anti-MHV factors. Infectious center assay demonstrated an approximately 500-fold lower level of infectibility by MHV of the LM-K cells as compared to L-2 cells. On an infected cell basis, production levels of infectious progeny and viral RNA were comparable between the two cell lines. The extent of virus-induced cell-cell fusion, however, was markedly reduced in the LM-K cells. Cell-mixing experiments showed that both infected L-2 and LM-K cells have the capacity of fusing with neighboring uninfected L-2 cells but not with uninfected LM-K cells. This suggests that the decreased level of fusion observed in the LM-K infection is due not to absence of viral fusion protein at the cell surface, but rather to an inherent resistance of the LM-K cell membrane to MHV-induced fusion. It is believed that such fusion resistance in LM-K cells moderates virus dissemination throughout the culture, thereby contributing to a state of virus persistence.

References

  1. Anderson R., Bilan P. Replacement of mouse LM fibroblast choline by a sulfonium analog. Effects on membrane properties as determined by virus probes. Biochim. Biophys Acta. 1981;640:91–99. doi: 10.1016/0005-2736(81)90534-4. [DOI] [PubMed] [Google Scholar]
  2. Cheley S., Anderson R. Cellular synthesis and modification of murine hepatitis virus polypeptides. J. Gen. Virol. 1981;54:301–311. doi: 10.1099/0022-1317-54-2-301. [DOI] [PubMed] [Google Scholar]
  3. Cheley S., Anderson R., Cupples M.J., Lee Chan E.C.M., Morris V.L. Intracellular murine hepatitis virus-specific RNAs contain common sequences. Virology. 1981;112:596–604. doi: 10.1016/0042-6822(81)90305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheley S., Morris V.L., Cupples M.J., Anderson R. RNA and polypeptide homology among murine coronaviruses. Virology. 1981;115:310–321. doi: 10.1016/0042-6822(81)90113-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Graves M.C., Silver S.M., Choppin P.W. Measles virus polypeptide synthesis in infected cells. Virology. 1978;86:254–263. doi: 10.1016/0042-6822(78)90025-9. [DOI] [PubMed] [Google Scholar]
  7. Hirano N., Goto N., Makino S., Fujiwara K. Persistent infection with mouse hepatitis virus JHM strain in DBT cell culture. Adv. Exp. Med Biol. 1981;142:301–308. doi: 10.1007/978-1-4757-0456-3_24. [DOI] [PubMed] [Google Scholar]
  8. Holland J.J., Grabau E.A., Jones C.L., Semler B.L. Evolution of multiple genome mutations during long term persistent infection by vesicular stomatitis virus. Cell. 1979;16:495–504. doi: 10.1016/0092-8674(79)90024-2. [DOI] [PubMed] [Google Scholar]
  9. Holmes K.V., Behnke J.N. Evolution of a coronavirus during persistent infection in vitro. Adv. Exp. Med Biol. 1981;142:287–299. doi: 10.1007/978-1-4757-0456-3_23. [DOI] [PubMed] [Google Scholar]
  10. Holmes K.V., Doller E.W., Behnke J.N. Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin. Adv. Exp. Med Biol. 1981;142:133–142. doi: 10.1007/978-1-4757-0456-3_11. [DOI] [PubMed] [Google Scholar]
  11. Kit S., Dubbs D.R., Piekarski L.J., Hsu T.C. Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine. Exp. Cell Res. 1963;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
  12. Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59 messenger RNA structure and genetic localization of the sequence divergence from the hepatotropic strain MHV3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leibowrrz J.L., Weiss S.R. Murine coronavirus RNA. Adv. Exp. Med. Biol. 1981;142:227–243. doi: 10.1007/978-1-4757-0456-3_19. [DOI] [PubMed] [Google Scholar]
  14. Leibowrrz J.L., Weiss S.R., Paavola E., Bond C.W. Cell-free translation of murine coronavirus RNA. J. Virol. 1982;43:905–913. doi: 10.1128/jvi.43.3.905-913.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leibowitz J.L., Wilhelmsen K.C., Bond C.W. The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:29–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lucas A., Coulter M., Anderson R., Dales S., Flintoff W. In vivo and in vitro models of demyelinating diseases. II. Persistence and host-regulated thermosensitivity in cells of neural derivation infected with mouse hepatitis and measles viruses. Virology. 1978;88:325–337. doi: 10.1016/0042-6822(78)90289-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lucas A., Flintoff W., Anderson R., Percy D., Coulter M., Dales S. In vivo and in vitro models of demyelinating diseases: Tropism of the JHM strain of murine hepatitis virus for cells of glial origin. Cell. 1977;12:553–560. doi: 10.1016/0092-8674(77)90131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manaker R.A., Piczak C.V., Miller A.A., Stanton M.F. A hepatitis virus complicating studies with mouse leukemia. J. Nat. Cancer In. 1961;27:29–51. [PubMed] [Google Scholar]
  19. Merchant D.J., Hellman K.B. Vol. 110. 1962. Growth of L-M strain mouse cells in a chemically defined medium; pp. 194–198. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  20. Nusse R., Asselbergs F.A.M., Salden M.H.L., Micalides R.J.A.M., Bloemendal H. Translation of mouse mammary tumor virus RNA: Precursor polypeptides are phosphorylated during processing. Virology. 1978;91:106–115. doi: 10.1016/0042-6822(78)90359-8. [DOI] [PubMed] [Google Scholar]
  21. Robs J.A., Bond C.W. Pathogenic murine coronaviruses. III. Biological and biochemical characterization of temperature-sensitive mutants of JHMV. Virology. 1979;94:385–399. doi: 10.1016/0042-6822(79)90469-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rothfels K.H., Axelrad A.A., Siminovitch L., McCulloch E.A., Parker R.C. Vol. 3. 1959. The origin of altered cell lines from mouse, monkey and man as indicated by chromosome and transplantation studies; pp. 189–214. (Canad. Cancer Conf.). [Google Scholar]
  23. Rottier P.J.M., Spaan W.J.M., Horzinek M., van der Zeijst B.A.M. Translation of three mouse hepatitis virus (MHV-A59) subgenomic RNAs in Xenopus laevis oocytes. J. Virol. 1981;38:20–26. doi: 10.1128/jvi.38.1.20-26.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Siddell S., Wege H., Barthel A., ter Meulen V. Intracellular protein synthesis and the in vitro translation of coronavirus JHM mRNA. Adv. Exp. Med. Biol. 1981;142:193–207. doi: 10.1007/978-1-4757-0456-3_17. [DOI] [PubMed] [Google Scholar]
  25. Sorensen O., Percy D., Dales S. In vivo and in vitro models of demyelinating diseases. III. JHM virus infection of rats. Arch. Neurol. 1980;37:478–484. doi: 10.1001/archneur.1980.00500570026003. [DOI] [PubMed] [Google Scholar]
  26. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., van der Zeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stohlman S.A., Sakaguchi A.Y., Weiner L.P. Characterization of the cold-sensitive murine hepatitis virus mutants rescued from latently infected cells by cell fusion. Virology. 1979;98:448–455. doi: 10.1016/0042-6822(79)90567-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strohman R.C., Moss P.S., Micou-Eastwood J., Przybyla A., Spector D., Paterson B. Messenger RNA for myosin polypeptides: Isolation from single myogenic cell cultures. Cell. 1977;10:265–273. doi: 10.1016/0092-8674(77)90220-3. [DOI] [PubMed] [Google Scholar]
  29. Sturman L.S. Characterization of a coronavirus. I. Structural proteins: Effects of preparative conditions on the migration of protein in polyacrylamide gels. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thomas P.S. Vol. 77. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose; pp. 5201–5205. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wege H., Siddell S., Sturm M., ter Meulen V. Coronavirus JIM: Characterization of intracellular viral RNA. J. Gen. Virol. 1981;54:213–217. doi: 10.1099/0022-1317-54-1-213. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES