Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;75(1):155–165. doi: 10.1016/0042-6822(76)90014-3

Purification and biophysical properties of human coronavirus 229E

John C Hierholzer 1
PMCID: PMC7130485  PMID: 824815

Abstract

Coronavirus 229E was grown to high titers in diploid fibroblast cells under medium containing twice the normal concentrations of amino acids and vitamins. Growth curves showed maximum virus production at multiplicities of infection of 0.1 and 1; maximum titers of intracellular virus occurred at 22–24 hr and of extracellular virus at 26 hr postadsorption. Tube infectivity titers ranged from 109.0–109.5 TCID50/ml and plaque titers from 1010.2–1010.9 y PFU/ml at the time of peak virus production, when no cytopathology was evident. Virus titer dropped rapidly between 26 and 56 hr, coincident with increasing cytopathology. A single precipitin band was observed in immunodiffusion and immunoelectrophoresis between concentrated virus preparations and antiserum to purified 229E. Neuraminidase and hemagglutinin assays were negative. Virus was purified by two procedures: adsorption to and elution from human “0” erythrocytes and CaHPO4 gel followed by equilibrium sucrose gradient centrifugation, and PEG precipitation followed by equilibrium glycerol/tartrate gradients and rate zonal sucrose or glycerol/tartrate gradients. Final lots of purified virus containing <0.02% of the crude tissue culture proteins had absorption maxima at 256 nm and minima at 241.2 nm and a mean extinction coefficient of E1cm1% = 54.3 at 256 nm. The fully corrected sedimentation coefficient for the intact virion was S20,v0 = 381 S. PAGE by different techniques revealed seven polypeptides of mean apparent molecular weights between 16,900 and 196,100. Six contained carbohydrate and one contained lipid. Electropherograms of 3H- and 14C-labeled virus were identical to those of stained gels. Two glycoproteins constituting 25% of the virion protein were identified by bromelin digestion as the spike proteins. The density in sucrose and in potassium tartrate was 1.18 g/ml for the virion and 1.15 g/ml for the “despiked” particle.

References

  1. Ackermann H.W., Cherchel G., Valet J.P., Matte J., Moorjani S., Higgins R. Expérience sur la nature de particules trouvées dans des cas d'hépatite virale: Type coronavirus, antigène australia et particules de Dane. Canad. J. Microbiol. 1974;20:193–203. [PubMed] [Google Scholar]
  2. Apostolov K., Spasić P., Bojanić N. Evidence of a viral aetiology in endemic (Balkan) nephropathy. Lancet. 1975;ii:1271–1273. doi: 10.1016/S0140-6736(75)90609-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bingham R.W. The polypeptide composition of avian infectious bronchitis virus. Arch. Virol. 1975;49:207–216. doi: 10.1007/BF01317539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradburne A.F. Antigenic relationships amongst coronaviruses. Arch. Ges. Virusforsch. 1970;31:352–364. doi: 10.1007/BF01253769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bucknall R.A., King L.M., Kapikian A.Z., Chanock R.M. Vol. 139. 1972. Studies with human coronaviruses. II. Some properties of strains 229E and OC 43; pp. 722–727. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  6. Burness A.T.H. Purification of encephalomyocarditis virus. J. Gen. Virol. 1969;5:291–303. doi: 10.1099/0022-1317-5-2-291. [DOI] [PubMed] [Google Scholar]
  7. Burness A.T.H. Ribonucleic acid content of encephalomyocarditis virus. J. Gen. Virol. 1970;6:373–380. doi: 10.1099/0022-1317-6-3-373. [DOI] [PubMed] [Google Scholar]
  8. Casey H.L. Vol. 74. USPHS; Washington, D.C: 1965. Standardized diagnostic complement fixation method and adaptation to micro test. (Public Health Monograph). [PMC free article] [PubMed] [Google Scholar]
  9. Caul E.O., Clarke S.K.R. Coronavirus propogated from patient with non-bacterial gastroenteritis. Lancet. 1975;ii:953–954. doi: 10.1016/S0140-6736(75)90363-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clarke J.T. Simplified “disc” (polyacrylamide gel) electrophoresis. Ann. N.Y. Acad. Sci. 1964;121:428–436. doi: 10.1111/j.1749-6632.1964.tb14214.x. [DOI] [PubMed] [Google Scholar]
  11. Compans R.W., Klenk H.D., Caliguiri L.A., Choppin P.W. Influenza virus proteins. 1. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology. 1970;42:880–889. doi: 10.1016/0042-6822(70)90337-5. [DOI] [PubMed] [Google Scholar]
  12. Crowle A.J. 2nd ed. Academic Press; New York: 1973. Immunodiffusion; p. 186. [Google Scholar]
  13. Cutting J.A., Roth T.F. Staining of phospho-proteins on acrylamide gel electropherograms. Anal. Biochem. 1973;54:386–394. doi: 10.1016/0003-2697(73)90367-9. [DOI] [PubMed] [Google Scholar]
  14. Esposito J.J., Hierholzer J.C., Obijeski J.F., Hatch M.H. Characterization of four virus isolates obtained during acute haemorrhagic conjunctivitis outbreaks. Microbios. 1974;11:215–227. [Google Scholar]
  15. Hamre D., Procknow J.J. Vol. 121. 1966. A new virus isolated from the human respiratory tract; pp. 190–193. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  16. Hierholzer J.C., Atuk N.O., Gwaltney J.M. New human adenovirus isolated from a renal transplant recipient: Description and characterization of candidate adenovirus type 34. J. Clin. Microbiol. 1975;1:366–376. doi: 10.1128/jcm.1.4.366-376.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hierholzer J.C., Palmer E.L., Whitfield S.G., Kaye H.S., Dowdle W.R. Protein composition of coronavirus OC 43. Virology. 1972;48:516–527. doi: 10.1016/0042-6822(72)90062-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hierholzer J.C., Suggs M.T. Standardized viral hemagglutination and hemagglutination-inhibition tests. 1. Standardization of erythrocyte suspensions. Appl. Microbiol. 1969;18:816–823. doi: 10.1128/am.18.5.816-823.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holmes A.W., Deinhardt F., Harris W., Ball F., Cline G. Coronaviruses and viral hepatitis. J. Clin. Invest. 1970;49:45a. [Google Scholar]
  20. Kapikian A.Z., James H.D., Kelly S.J., Vaughn A.L. Detection of coronavirus strain 692 by immune electron microscopy. Infect. Immun. 1973;7:111–116. doi: 10.1128/iai.7.1.111-116.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaye H.S., Dowdle W.R. Some characteristics of hemagglutination of certain strains of “IBV-like” virus. J. Infect. Dis. 1969;120:576–581. doi: 10.1093/infdis/120.5.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaye H.S., Dowdle W.R. Seroepidemiologic survey of coronavirus (strain 229E) infections in a population of children. Amer. J. Epidem. 1975;101:238–244. doi: 10.1093/oxfordjournals.aje.a112091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaye H.S., Hierholzer J.C., Dowdle W.R. Vol. 135. 1970. Purification and further characterization of an “IBV-like” virus (Coronavirus) pp. 457–463. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  24. Kaye H.S., Ong S.B., Dowdle W.R. Detection of coronavirus 229E antibody by indirect hemagglutination. Appl. Microbiol. 1972;24:703–707. doi: 10.1128/am.24.5.703-707.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keenan K.P., Jervis H.R., Marchwicki R.H., Binn L.N. Intestinal infection of neonatal dogs with canine coronavirus 1–71: Studies by virologic, histologic, histochemical, and immunofluorescent techniques. Amer. J. Vet. Res. 1976;37:247–256. [PubMed] [Google Scholar]
  26. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Laver W.G., Kilbourne E.D. Identification in a recombinant influenza virus of structural proteins derived from both parents. Virology. 1966;30:493–501. doi: 10.1016/0042-6822(66)90125-5. [DOI] [PubMed] [Google Scholar]
  28. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  29. Maizel J.V., Summers D.F., Scharff M.D. SDS-acrylamide gel electrophoresis and its application to the proteins of poliovirus- and adenovirus-infected human cells. J. Cell. Physiol. 1970;76:273–288. doi: 10.1002/jcp.1040760307. [DOI] [PubMed] [Google Scholar]
  30. McIntosh K. Coronaviruses: A comparative review. Curr. Top. Microbiol. Immunol. 1974;63:85–129. [Google Scholar]
  31. Mebus C.A., Stair E.L., Rhodes M.B., Twiehaus M.J. Neonatal calf diarrhea: propagation, attentuation, and characteristics of a coronavirus-like agent. Amer. J. Vet. Res. 1973;34:145–150. [PubMed] [Google Scholar]
  32. Obijeski J.F., Marchenko A.T., Bishop D.H., Cann B.W., Murphy F.A. Comparative electrophoretic analyses of the virus proteins of four rhabdoviruses. J. Gen. Virol. 1974;22:21–33. doi: 10.1099/0022-1317-22-1-21. [DOI] [PubMed] [Google Scholar]
  33. Pokorný J., Brůčová M., Rýc M. Biophysical properties of corona-virus strain OC43. Acta Virol. 1975;19:137–142. [PubMed] [Google Scholar]
  34. Russ G., Polakova K. The molecular weight determination of proteins and glycoproteins of RNA enveloped viruses by polyacrylamide gel electrophoresis in SDS. Biochem. Biophys. Res. Commun. 1973;55:666–672. doi: 10.1016/0006-291x(73)91196-0. [DOI] [PubMed] [Google Scholar]
  35. Shapiro A.L., Viñuela E., Maizel J.V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 1967;28:815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  36. Sheboldov A.V., Zakstelskaya L.Y., Zhdanov V.M. Sedimentation and density characteristics of coronavirus. Vopr. Virusol. 1973;1:59–64. [PubMed] [Google Scholar]
  37. Tannock G.A. The nucleic acid of infectious bronchitis virus. Arch. Ges. Virusforsch. 1973;43:259–271. doi: 10.1007/BF01250421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tyrrell D.A. Coronaviruses. Nature (London) 1968;220:650. [Google Scholar]
  39. Wright R. Chronic hepatitis. Brit. Med. Bull. 1972;28:120–124. doi: 10.1093/oxfordjournals.bmb.a070909. [DOI] [PubMed] [Google Scholar]
  40. Yamamoto K.R., Alberts B.M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970;40:734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]
  41. Ziegler D.W., Hutchinson H.D. Coupled-enzyme system for measuring viral neuraminidase activity. Appl. Microbiol. 1972;23:1060–1066. doi: 10.1128/am.23.6.1060-1066.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zuckerman A.J., Taylor P.E., Almeida J.D. Presence of particles other than the Australia-SH antigen in a case of chronic active hepatitis with cirrhosis. Brit. Med. J. 1970;1:262–264. doi: 10.1136/bmj.1.5691.262. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES