Abstract
A group of 11 monoclonal antibodies (MAbs) raised against transmissible gastroenteritis virus (TGEV) was used to study the antigenic structure of the virus nucleoprotein (N). To identify the regions recognized by MAbs, DNA fragments derived from the N-coding region of the TGEV strain FS772/70 were cloned into pUR expression plasmids and the antigenicity of the resulting fusion proteins was analyzed by immunobloting. A major antigenic domain was identified, covering the first 241 amino acid residues of N, within which an epitope (residues 57–117) was also found. A second antigenic domain extended from residues 175 to 360 of the nucleoprotein, within which a subsite was characterized within the region covering residues 241–349. MAb DA3 recognized a linear epitope which mapped within residues 360 and 382 at the carboxy terminus of the nucleoprotein. The binding of the majority of the MAbs (8 out of 11) to large fusions, but not to smaller fragments included in them, suggests a conformational dependence of the MAb binding sites. Our data show that the use of fusions in Western blot experiments is a useful approach to map not only linear epitopes but more complex antigenic structures found in the nucleoprotein of TGEV.
References
- Baric R.S., Nelson G.W., Fleming J.O., Deans R.J., Keck J.G., Casteel N., Stohlman S.A. Interactions between coronavirus nucleocapsid protein and viral RNAs: Implications for viral transcription. J. Virol. 1988;62:4280–4287. doi: 10.1128/jvi.62.11.4280-4287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow D.J., Edwards M.S., Thornton J.M. Continuous and discontinuous protein antigenic determinants. Nature. 1986;322:747–748. doi: 10.1038/322747a0. [DOI] [PubMed] [Google Scholar]
- Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton P., Garwes D.J., Millson G.C., Page K., Bountiff L., Stewart F., Walmsley J. Towards a genetically engineered vaccine against porcine gastroenteritis virus. In: Magnien E., editor. Biomolecular Engineering in the European Community. 1986. pp. 301–313. The Netherlands. [Google Scholar]
- Britton P., Carmenes R.S., Page K.W., Garwes D.J., Parra F. Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
- Burnette W.N. Western blotting: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiografic detection with radioiodinated protein A. Anal. Biochem. 1981;112:195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Caul E.O., Ashley C.R., Ferguson M., Eggelstone S.I. Preliminary studies on the isolation of coronavirus 229E nucleocapsids. FEMS Microbiol. Lett. 1979;5:101–105. [Google Scholar]
- Compton J.R., Rogers D.B., Holmes K.V., Fertsch D., Remenick J., McGowan J.J. In vitro replication of Mouse Hepatitis Virus strain A59. J. Virol. 1987;61:1814–1820. doi: 10.1128/jvi.61.6.1814-1820.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garwes D.J. Coronavirus in animals. In: Tyrrel D.A.J., Kapikian A.Z., editors. Virus infections of the Gastrointestinal Tract. Dekker; New York: 1982. pp. 315–359. [Google Scholar]
- Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Pocock D.H., Wijaszka T.M. Identification of heat-dissoci able RNA complexes in the porcine coronavirus. Nature. 1975;257:508–510. doi: 10.1038/257508a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garwes D.J., Reynolds D.J. The polypeptide structure of canine coronavirus and its relationship to porcine transmissible gastroenteritis virus. J. Gen. Virol. 1981;52:153–157. doi: 10.1099/0022-1317-52-1-153. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Stewart F., Elleman C.J. Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In: Lai M., Stohlman S., editors. Coronaviruses. Plenum; New York: 1987. pp. 509–516. [DOI] [PubMed] [Google Scholar]
- Hanahan D. Techniques for transformation of E. coli. In: Glover D.M., editor. Vol. II, IRL Press; Oxford: 1985. pp. 109–135. (DNA Cloning: A Practical Approach). [Google Scholar]
- Jacobs L., van der Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs L., Meloen R.H., Gielkens A.J., van Oirschot J.T. Epitope analysis of glycoprotein I of pseudorabies virus. J. Gen. Virol. 1990;71:881–887. doi: 10.1099/0022-1317-71-4-881. [DOI] [PubMed] [Google Scholar]
- Jiménez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in Transmissible Gastroenteritis Virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy D.A., Johnson-Lussenburg C.M. Isolation and morphology of the internal component of human coronavirus, strain 229E. Intervirology. 1976;6:197–206. doi: 10.1159/000149474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Langridge J., Langridge P., Bergquist P.L. Extraction of nucleic acids from agarose gels. Anal. Biochem. 1980;103:264–271. doi: 10.1016/0003-2697(80)90266-3. [DOI] [PubMed] [Google Scholar]
- Lenstra J.A., Kusters J.G., Koch G., van der Zedst B.A.M. Antigenicity of the peplomer protein of infectious bronchitis virus. Mol. Immunol. 1989;26:7–15. doi: 10.1016/0161-5890(89)90014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. Amino acid sequence of a conserved neutralizing epitope of murine coronavirus. J. Virol. 1989;63:1408–1412. doi: 10.1128/jvi.63.3.1408-1412.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
- Nakanaga K., Yamanouchi K., Fujiwara K. Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice. J. Virol. 1986;59:168–171. doi: 10.1128/jvi.59.1.168-171.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshiro L.S. Coronaviruses. In: Dalton A.J., Haguenau F., Dalton A.J., Haguenau F., editors. Academic Press; New York: 1973. pp. 331–343. (Ultrastructure of Animal Viruses and Bacteriophages: An Atlas). [Google Scholar]
- Rasschaert D., Gelfi J., Laude H. Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie. 1987;69:591–600. doi: 10.1016/0300-9084(87)90178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüther V., Müller-Jill B. Easy identification of cDNA clones. EMBO J. 1983;2:1791–1794. doi: 10.1002/j.1460-2075.1983.tb01659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sánchez C.M., Jimenez J., Laviada M.D., Correa I., Suñe C., Bullido M.J., Gebauer F., Smerdou C., Callebaut P., Escribano J.M., Eniuanes L. Antigenic homology among coronaviruses related to Transmissible Gastroenteritis Virus. Virology. 1990;174:410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sethna P.B., Hung L., Brian D.A. Vol. 86. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons; pp. 5626–5630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D.F., Sefton B.M. Coronaviruses multiplication: the locations of genes for the virion proteins on the avian infectious bronchitis virus genome. J. Virol. 1984;50:22–29. doi: 10.1128/jvi.50.1.22-29.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stohlman S.A., Baric R.S., Nelson G.N., Soe L.H., Welter L.M., Deans R.J. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 1988;62:4288–4295. doi: 10.1128/jvi.62.11.4288-4295.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V. The molecular biology of Coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze S.A., Stanley K.K. Identification of two epitopes in the carboxy terminal 15 amino acids of the El glycoprotein of mouse hepatitis virus A59 by using hibrid proteins. J. Virol. 1986;60:928–934. doi: 10.1128/jvi.60.3.928-934.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wesley R.D., Woods R.D., Cheung A.K. Genetic basis of the pathogenesis of transmissible gastroenteritis virus. J. Virol. 1990;64:4761–4766. doi: 10.1128/jvi.64.10.4761-4766.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]