Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;239(1):78–86. doi: 10.1006/viro.1997.8867

Identification of a Specific Interaction between the Coronavirus Mouse Hepatitis Virus A59 Nucleocapsid Protein and Packaging Signal

Richard Molenkamp 1, Willy JM Spaan 1,1
PMCID: PMC7130520  PMID: 9426448

Abstract

The coronavirus mouse hepatitis virus (MHV) is an enveloped positive stranded RNA virus. In infected cells MHV produces a 3′ coterminal nested set of subgenomic messenger RNAs. Only the genomic RNA, however, is encapsidated by the nucleocapsid protein and incorporated in infectious MHV virions. It is believed that an RNA packaging signal (Ps), present only in the genomic RNA, is responsible for this selectivity. Earlier studies mapped this signal to a 69-nt stem–loop structure positioned in the 3′ end of ORF1b. The selective encapsidation mechanism probably initiates by specific interaction of the packaging signal with the nucleocapsid protein. In this study we demonstrate thein vitrointeraction of the MHV-A59 nucleocapsid protein with the packaging signal of MHV using gel retardation and UV cross-linking assays. This interaction was observed not only with the nucleocapsid protein from infected cells but also with that from purified virions and from cells expressing a recombinant nucleocapsid protein. The specificity of the interaction was demonstrated by competition experiments with nonlabeled Ps containing RNAs, tRNA, and total cytoplasmic RNA. The results indicated that no virus specific modification of the N-protein or the presence of other viral proteins are required for thisin vitrointeraction. The assays described in this report provide us with a powerful tool for studying encapsidation (initiation) in more detail.

Footnotes

B. N. FieldsD. M. Knipe, Eds.

References

REFERENCES

  • 1.Aldovini A., Young R.A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J. Virol. 1990;64:1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Allain F.H.-T., Gubser C.C., Howe P.W.A., Nagai K., Neuhaus D., Varani G. Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation. Nature. 1996;380:646–650. doi: 10.1038/380646a0. [DOI] [PubMed] [Google Scholar]
  • 3.Anderson R., Wong F. Membrane and phospholipid binding by murine coronaviral nucleocapsid N protein. Virology. 1993;194:224–232. doi: 10.1006/viro.1993.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Armstrong J., Smeekens S., Rottier P.J.M. Sequence of the Nucleocapsid gene from murine coronavirus MHV-A59. Nucleic Acids Res. 1983;11:883–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Baric R.S., Nelson G.W., Fleming J.O., Deans R.J., Keck J.G., Casteel N., Stohlman S.A. Interactions between coronavirus nucleocapsid protein and viral RNAs: Implications for viral transcription. J. Virol. 1988;62:4280–4287. doi: 10.1128/jvi.62.11.4280-4287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Beck J., Nassal M. Sequence- and structure-specific determinantsin the interaction between the RNA encapsidation signal and reverse transcriptase of avian hepatitis B viruses. J. Virol. 1997;71:4971–4980. doi: 10.1128/jvi.71.7.4971-4980.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Berkowitz R.D., Ohagen A., Hoglund S., Goff S.P. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric gag polyproteins during RNA packagingin vivo. J. Virol. 1995;69:6445–6456. doi: 10.1128/jvi.69.10.6445-6456.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bos E.C.W., Luytjes W., Meulen van der H., Koerten H.K., Spaan W.J.M. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology. 1996;218:52–60. doi: 10.1006/viro.1996.0165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bos E.C.W., Dobbe J., Luytjes W., Spaan W.J.M. A subgenomic mRNA transcript of the coronavirus mouse hepatitis virus strain A59 defective interfering (DI) RNA is packaged when it contains the DI packaging signal. J. Virol. 1997;71:5684–5687. doi: 10.1128/jvi.71.7.5684-5687.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.P. J. Bredenbeek, 1990, Nucleic Acid Domains and Proteins Involved in the Replication of Coronaviruses, University of Utrecht, Utrecht, The Netherlands
  • 11.Burd C.G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994;265:615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  • 12.Dignam J.D., Lebowitz R.M., Roeder R.G. Acurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Draper D.E. Protein-RNA recognition. Annu. Rev. Biochem. 1995;64:593–620. doi: 10.1146/annurev.bi.64.070195.003113. [DOI] [PubMed] [Google Scholar]
  • 14.Dubois-Dalcq M.E., Doller E.W., Haspel M.V., Holmes K.V. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virology. 1982;119:317–331. doi: 10.1016/0042-6822(82)90092-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Dupraz P., Spahr P.F. Specificity of Rous sarcoma virus nucleocapsid protein in genomic RNA packaging. J. Virol. 1992;66:4662–4670. doi: 10.1128/jvi.66.8.4662-4670.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Fischer F., Peng D., Hingley S.T., Weiss S.R., Masters P.S. The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 1997;71:996–1003. doi: 10.1128/jvi.71.2.996-1003.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Fosmire J.A., Hwang K., Makino S. Identification and characterization of a coronavirus packaging signal. J. Virol. 1992;66:3522–3530. doi: 10.1128/jvi.66.6.3522-3530.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Holmes K.V. Fundamental Virology. Raven Press; New York: 1991. p. 471–486. [Google Scholar]
  • 19.Holmes K.V., Behnke J.N. Evolution of a coronavirus during persistent infectionin vitro. Adv. Exp. Med. Biol. 1981;142:287–299. doi: 10.1007/978-1-4757-0456-3_23. [DOI] [PubMed] [Google Scholar]
  • 20.Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Characterization of leader RNAsequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc. Natl. Acad. Sci. USA. 1984;81:3626–3630. doi: 10.1073/pnas.81.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Laude H., Masters P.S. In: The Coronaviridae. Siddell S.G., editor. Plenum Press; New York: 1995. pp. 141–163. [Google Scholar]
  • 22.Lazinski D., Gradzielska E., Das A. Sequence specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell. 1989;59:207–215. doi: 10.1016/0092-8674(89)90882-9. [DOI] [PubMed] [Google Scholar]
  • 23.Luytjes W. In: The Coronaviridae. Siddell S.G., editor. Plenum; New York: 1995. pp. 33–54. [Google Scholar]
  • 24.Luytjes W., Gerritsma H., Bos E.C.W., Spaan W.J.M. Characterisation of two temperature-sensitive mutants of coronavirus mouse hepatitis virus strain A59 with maturation defects in the spike protein. J. Virol. 1997;71:949–955. doi: 10.1128/jvi.71.2.949-955.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.MacNaughton M.R., Davies H.A., Nermut M.V. Ribonucleoprotein-like structures from coronavirus particles. J. Gen. Virol. 1978;39:545–549. doi: 10.1099/0022-1317-39-3-545. [DOI] [PubMed] [Google Scholar]
  • 26.Mahondas D.V., Dales S. Endosomal association of a protein phosphatase with high dephosphorylation activity against a coronavirus nucleocapsid protein. FEBS Lett. 1991;282:419–424. doi: 10.1016/0014-5793(91)80528-B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Makino S., Shieh C., Soe L.H., Baker S.C., Lai M.M.C. Primary structure and translation of a defective interfering RNA of murine coronavirus. Virology. 1988;166:1–11. doi: 10.1016/0042-6822(88)90526-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Masters P.S. Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus. Arch. Virol. 1992;125:141–160. doi: 10.1007/BF01309634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Most R.G., v. d., Bredenbeek P.J., Spaan W.J.M. A domain at the 3′ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J. Virol. 1991;65:3219–3226. doi: 10.1128/jvi.65.6.3219-3226.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Murphy F.A., Fauquet C.M., Bishop D.H.L., Ghabrial S.A., Jarvis A.W., Martinelli G.P., Mayo M.A., Summers M.D. Virus Taxonomy, Classification and Nomenclature of Viruses. Springer-Verlag; New York: 1995. [Google Scholar]
  • 31.Nelson G.W., Stohlman S.A. Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein. J. Gen. Virol. 1993;74:1975–1979. doi: 10.1099/0022-1317-74-9-1975. [DOI] [PubMed] [Google Scholar]
  • 32.Owen K.E., Kuhn R.J. Identification of a region in the sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation. J. Virol. 1996;70:2757–2763. doi: 10.1128/jvi.70.5.2757-2763.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Parker M.M., Masters P.S. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology. 1990;179:463–468. doi: 10.1016/0042-6822(90)90316-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Pugatsch T., Stacey D.W. Identification of a sequence likely to be required for avian retroviral packaging. Virology. 1983;128:505–511. doi: 10.1016/0042-6822(83)90279-9. [DOI] [PubMed] [Google Scholar]
  • 35.Risco C., Anton I.M., Enjuanes L., Carrascosa J.L. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J. Virol. 1996;70:4773–4777. doi: 10.1128/jvi.70.7.4773-4777.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1989. [Google Scholar]
  • 37.Schlesinger S., Makino S., Linial M.L. Cistrans. Semin. Virol. 1994;5:39–49. doi: 10.1006/smvy.1994.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Snijder E.J., Wassenaar A.L.M., Dinten L.C., v., Spaan W.J.M., Gorbalenya A.E. The arterivirus Nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. J. Biol. Chem. 1996;271:4864–4871. doi: 10.1074/jbc.271.9.4864. [DOI] [PubMed] [Google Scholar]
  • 39.Sorge J., Ricci W., Hughes S.H. cis. J. Virol. 1983;48:667–675. doi: 10.1128/jvi.48.3.667-675.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Spaan W.J.M., Rottier P.J.M., Horzinek M.C., Van der Zeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Spaan W.J.M., Delius H., Skinner M.A., Armstrong J., Rottier P.J.M., Smeekens S., Van der Zeijst B.A.M., Siddell S.G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO. J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Spaan W.J.M., Cavanagh D., Horzinek M.C. Coronaviruses: structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  • 43.Stohlman S.A., Fleming J.O., Patton C.D., Lai M.M.C. Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein. Virology. 1983;130:527–532. doi: 10.1016/0042-6822(83)90106-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Stohlman S.A., Baric R.S., Nelson G.W., Soe L.H., Welter L.M., Deans R.J. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 1988;62:4288–4295. doi: 10.1128/jvi.62.11.4288-4295.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Stohlman S.A., Lai M.M.C. Phosphoproteins of murine hepatitis viruses. J. Virol. 1979;32:672–675. doi: 10.1128/jvi.32.2.672-675.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Strauss J.H., Strauss E.G. The alphaviruses: gene expression, replication, and evolution [published erratum appears inMicrobiol. Rev.,58. Microbiol. Rev. 1994;58:491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Talbot P.J., Buchmeier M.J. Antigenic variation among murine coronaviruses: Evidence for polymorphism on the peplomer glycoprotein, E2. Virus Res. 1985;2:317–328. doi: 10.1016/0168-1702(85)90028-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Vennema H., Godeke G.-J., Rossen J.W.A., Voorhout W.F., Horzinek M.C., Opstelten D.-J.E., Rottier P.J.M. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996;15:2020–2028. doi: 10.1002/j.1460-2075.1996.tb00553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Weis B., Nitschko H., Ghattas I., Schlesinger S. Evidence for specificity in the encapsidation of Sindbis virus RNAs. J. Virol. 1989;63:5310–5318. doi: 10.1128/jvi.63.12.5310-5318.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Witherell G.W., Gott J.M., Uhlenbeck O.C. Specific interaction between RNA phage coat proteins and RNA. Prog. Nucleic Acid Res. Mol. Biol. 1991;40:185–220. doi: 10.1016/s0079-6603(08)60842-9. [DOI] [PubMed] [Google Scholar]
  • 52.Woo K., Joo M., Narayanan K., Kim K.H., Makino S. Murine coronavirus packaging signal confers packaging to nonviral RNA. J. Virol. 1997;71:824–827. doi: 10.1128/jvi.71.1.824-827.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Zhang Y., Barklis E. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J. Virol. 1995;69:5716–5722. doi: 10.1128/jvi.69.9.5716-5722.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Zhou M., Williams A.K., Chung S., Wang L., Collisson E.W. The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3′ terminus of the genome. Virology. 1997;217:191–199. doi: 10.1006/viro.1996.0106. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES