Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 11;182(2):655–663. doi: 10.1016/0042-6822(91)90606-C

Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein

Johan A Den Boon 1,1, Eric J Snijder 1,1, Jacomine Krijnse Locker 1, Marian C Horzinek 1, Peter JM Rottier 1,2
PMCID: PMC7130535  PMID: 2024492

Abstract

The nucleotide sequence of the Berne virus envelope (E) protein gene was determined and its 26.5K translation product was identified by in vitro transcription and translation. Computer analysis of the protein sequence revealed the characteristics of a class III membrane protein lacking a cleaved signal sequence but containing three successive transmembrane α-helices in the N-terminal half, much the same as the coronavirus membrane (M) protein. The disposition of the E protein in the membrane was studied by in vitro translation in the presence of microsomes and by subsequent proteinase K digestion. Only small portions of either end of the polypeptide were found to be exposed on opposite sides of the vesicle membranes. Experiments with a hybrid E protein (EM) containing the C-terminal tail of a coronavirus M protein, to which an anti-peptide serum was available, showed that this C-terminus was present at the cytoplasmic side of the membrane, which is another similarity to the coronavirus M protein. Immunofluorescence experiments indicated that the EM protein, expressed by a recombinant vaccinia virus, accumulated in intracellular membranes, predominantly those of the endoplasmic reticulum. The common features of the torovirus E and the coronavirus M protein support our hypothesis that an evolutionary relationship exists between these groups of intracellularly budding viruses.

References

  1. Armstrong J., Niemann H., Smeekens S., Rottier P.J.M., Warren G. Sequence and topology of a model intracellular membrane protein, El glycoprotein, from a coronavirus. Nature. 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 1975;67:852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boursnell M.E.G., Brown T.D.K., Binns M.M. Sequence of the membrane protein gene from avian coronavirus I BV. Virus Res. 1984;1:303–314. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cabanagh D., Brian D.A., Enjuanes L., Holmes K.V., Lai M.M.C., Laude H., Siddell S.G., Spaan W., Taguchi F., Talbot P.J. Recommendations of the coronavirus study group for the nomenclature of the structural proteins, mRNAs, and genes of coronaviruses. Virology. 1990;176:306–307. doi: 10.1016/0042-6822(90)90259-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 1985;5:3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen E.Y., Seeburg P.H. Supercoil sequencing: A fast and simple method for sequencing plasmid DNA. DNA. 1985;4:165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies 0. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubois-Dalcq M.E., Doller E.W., Haspel M.V., Holmes K.V. Cell tropism and expression of mouse hepatitis virus (MHV) in mouse spinal chord cultures. Virology. 1982;119:317–331. doi: 10.1016/0042-6822(82)90092-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984;179:125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  10. Fagerland J.A., Pohlenz J.F.L., Woode G.N. A morphological study of the replication of Breda virus (proposed family Toroviridae) in bovine intestinal cells. J. Gen. Virol. 1986;67:1293–1304. doi: 10.1099/0022-1317-67-7-1293. [DOI] [PubMed] [Google Scholar]
  11. Francki R.I.B. I. C. T. V. Sixth Report of the International Committee on Taxonomy of Viruses. 1991. in press. [Google Scholar]
  12. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horzinek M.C., Weiss M. Torviridae: A taxonomic proposal. Zentralbl. Veterinaermed. Reihe B. 1984;31:649–659. [PubMed] [Google Scholar]
  14. Horzinek M.C., Ederveen J., Weiss M. The nucleocapsid of Berne virus. J. Gen. Virol. 1985;66:1287–1296. doi: 10.1099/0022-1317-66-6-1287. [DOI] [PubMed] [Google Scholar]
  15. Horzinek M.C., Ederveen J., Kaeffer B., De Boer D., Weiss M. The peplomers of Berne virus. J. Gen. Virol. 1986;67:2475–2483. doi: 10.1099/0022-1317-67-11-2475. [DOI] [PubMed] [Google Scholar]
  16. Horzinek M.C., Flewett T.H., Saif L.J., Spaan W.J.M., Weiss M., Woods G.N. A new family of vertebrate viruses: Toroviridae. Intervirology. 1987;27:17–24. doi: 10.1159/000149710. [DOI] [PubMed] [Google Scholar]
  17. Kapke P.A., Tung F.Y.T., Hogue B.G., Brian D.A., Woods R.D., Wesley R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988;165:367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lapps W., Hogue B.G., Brian D.A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laude H., Rasschaert D., Huet J.C. Sequence and N-terminal processing of the transmembrane protein El of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  20. Mackett M., Smith G.L., Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 1984;49:857–864. doi: 10.1128/jvi.49.3.857-864.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  22. Pearson W.R., Lipman D.J. Vol. 85. 1988. Improved tools for biological sequence comparison; pp. 2444–2448. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Puddington L., Machamer C.E., Rose J.K. Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the VSV G protein to the cell surface. J. Cell Biol. 1987;102:2147–2157. doi: 10.1083/jcb.102.6.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raabe T., Siddell S.G. Nucleotide sequence of the gene encoding the membrane protein of human coronavirus 229E. Arch. Virol. 1989;107:323–328. doi: 10.1007/BF01317928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rose J.K., Bergmann J.E. Expression from cloned cDNA of cell surface secreted forms of the glycoprotein of vesicular stomatis virus in eukaryotic cells. Cell. 1982;30:753–762. doi: 10.1016/0092-8674(82)90280-x. [DOI] [PubMed] [Google Scholar]
  26. Rottier P.J.M., Horzinek M.C., ban Der Zeijst B.A.M. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: Effect of tunicamycin. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rottier P.J.M., Brandenburg D., Armstrong J., ban Der Zeijst B.A.M., Warren G. Vol. 81. 1984. Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: The El glycoprotein of coronavirus mouse hepatitis virus A59; pp. 1421–1425. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rottier P.J.M., Welling G.W., Welling-Wester S., Niesters H.G.M., Lenstra J.A., ban Der Zeijst B.A.M. Predicted membrane topology of the coronavirus protein El. Biochemistry. 1986;25:1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
  29. Rottier P.J.M., Rose J.K. Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. J. Virol. 1987;61:2042–2045. doi: 10.1128/jvi.61.6.2042-2045.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Snijder E.J., Ederveen J., Spaan W.J.M., Weiss M., Horzinek M.C. Characterization of Berne virus genomic and messenger RNAs. J. Gen. Virol. 1988;69:2135–2144. doi: 10.1099/0022-1317-69-9-2135. [DOI] [PubMed] [Google Scholar]
  31. Snijder E.J., Den Boon J.A., Spaan W.J.M., Verjans G.M.G.M., Horzinek M.C. Identification and primary structure of the gene encoding the Berne virus nucleocapsid protein. J. Gen. Virol. 1989;70:3363–3370. doi: 10.1099/0022-1317-70-12-3363. [DOI] [PubMed] [Google Scholar]
  32. Snijder E.J., Horzinek M.C., Spaan W.J.M. A 3′-coterminal nested set of independently transcribed messenger RNAs is generated during Berne virus replication. J. Virol. 1990;64:331–338. doi: 10.1128/jvi.64.1.331-338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Snijder E.J., Den Boon J.A., Spaan W.J.M., Weiss M., Horzinek M.C. Primary structure and post-translational processing of the Berne virus peplomer protein. Virology. 1990;178:355–363. doi: 10.1016/0042-6822(90)90332-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Snijder E.J., Den Boon J.A., Bredenbeek P.J., Horzinek M.C., Rijnbrand R., Spaan W.J.M. The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Res. 1990;18:4535–4542. doi: 10.1093/nar/18.15.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spaan W.J.M., Cabanagh D., Horzinek M.C. Corona viruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  36. bon Heijne G. On the hydrophobic nature of signal sequences. Eur. J. Biochem. 1981;116:419–421. doi: 10.1111/j.1432-1033.1981.tb05351.x. [DOI] [PubMed] [Google Scholar]
  37. Weiss M., Steck F., Horzinek M.C. Purification and partial characterization of a new enveloped RNA virus Berne virus. J. Gen. Virol. 1983;64:1849–1858. doi: 10.1099/0022-1317-64-9-1849. [DOI] [PubMed] [Google Scholar]
  38. Weiss M., Horzinek M.C. Morphogenesis of Berne virus (proposed family Toroviridae) J. Gen. Virol. 1986;67:1305–1314. doi: 10.1099/0022-1317-67-7-1305. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES