Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2009 Dec 2;59(2):127–134. doi: 10.1046/j.1432-0436.1995.5920127.x

Two stages of enteropathogenic Escherichia coli intestinal pathogenicity are up and down-regulated by the epithelial cell differentiation

Jean Marc Gabastou 1, Sophie Kernéis 1, Marie Françoise Bernet-Camard 1, Alain Barbat 2, Marie Hélène Coconnier 1, James B Kaper 3, Alain L Servin 1,*
PMCID: PMC7130537  PMID: 8522069

Abstract

Pathogens and eucaryotic cells are active partners during the process of pathogenicity. To gain access to enterocytes and to cross the epithelial membrane, many enterovirulent microorganisms interact with the brush border membrane-associated components as receptors. Recent reports provide evidence that intestinal cell differentiation plays a role in microbial pathogenesis. Human enteropathogenic Escherichia coli (EPEC) develop their pathogenicity upon infecting enterocytes. To determine if intestinal epithelial cell differentiation influences EPEC pathogenicity, we examined the infection of human intestinal epithelial cells by JPN 15 (pMAR7) [EAF+ eae+] EPEC strain as a function of the cell differentiation. The human embryonic intestinal INT407 cells, the human colonic T84 cells, the human undifferentiated HT-29 cells (HT-29 Std) and two enterocytic cell lines, HT-29 glc−/+ and Caco-2 cells, were used as cellular models. Cells were infected apically with the EPEC strain and the cell-association and cell-entry were examined by quantitative determination using metabolically radiolabeled bacteria, as well as by light, scanning and tranmission electron microscopy. [EAF+ eae+] EPEC bacteria efficiently colonized the cultured human intestinal cells. Diffuse bacterial adhesion occurred to undifferentiated HT-29 Std and INT407 cells, whereas characteristic EPEC cell clusters were observed on fully differentiated enterocytic HT-29 glc−/+ cells and on colonic crypt T84 cells. As shown using the Caco-2 cell line, which spontaneously differentiates in culture, the formation of EPEC clusters increased as a function of the epithelial cell differentiation. In contrast, efficient cell-entry of [EAF+ eae+] EPEC bacteria occured in recently differentiated Caco-2 cells and decreased when the cells were fully differentiated. Our results provide evidence that the intestinal cell differentiation could play a dual role in EPEC pathogenesis: it up-regulates intestinal cell colonization and down-regulates intestinal cell invasion.

References

  • 1.Bliska JB, Galan JE, Falkow S. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell. 1993;73:903–920. doi: 10.1016/0092-8674(93)90270-z. [DOI] [PubMed] [Google Scholar]
  • 2.Canil C, Rosenshine I, Ruschkowski S, Donnenberg MS, Kaper JB, Finlay BB. Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infect Immun. 1993;61:2755–2762. doi: 10.1128/iai.61.7.2755-2762.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Coconnier MH, Bernet MF, Servin AI. How intestinal epithelial cell differentiation inhibits the cell-entry of Yersinia pseudotuberculosis in colon carcinoma Caco-2 cell line in culture. Differentiation. 1994 doi: 10.1046/j.1432-0436.1994.5810087.x. (in press) [DOI] [PubMed] [Google Scholar]
  • 4.Cohen MB, Jensen NJ, Hawkins JA, Mann EA, Thompson MR, Lentze MJ, Giannella RA. Receptors for Escherichia coli heat stable enterotoxin in human intestine and in a human intestinal cell line (Caco-2) J Cell Physiol. 1993;156:138–144. doi: 10.1002/jcp.1041560119. [DOI] [PubMed] [Google Scholar]
  • 5.Darfeuille-Michaud A, Aubel D, Chauvière G, Rich C, Bourges M, Servin A, Joly B. Adhesion of enterotoxigenic Escherichia coli to the human colon carcinoma cell line Caco- 2 in culture. Infect Immun. 1990;58:893–902. doi: 10.1128/iai.58.4.893-902.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Darmoul D, Lacasa M, Baricault L, Marguet D, Sapin C, Trotot P, Barbat A, Trugnan G. Dipeptidyl peptidase IV (CD 26) gene expression in enterocyte-like colon cancer cell lines HT-29 and Caco-2. J Biol Chem. 1992;267:4824–4833. [PubMed] [Google Scholar]
  • 7.Dharmsathaphorn K, McRoberts JA, Mandel KG, Tisdale LD, Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984;246:G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  • 8.Donnenberg MS, Donohue-Rolfe A, Keusch GT. Epithelial cell invasion: an overlooked property of enteropathogenic Escherichia coli (EPEC) associated with the EPEC adherence factor. J Infect Dis. 1989;160:452–459. doi: 10.1093/infdis/160.3.452. [DOI] [PubMed] [Google Scholar]
  • 9.Donnenberg MS, Giron JA, Nataro JP, Kaper JB. A plamid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol. 1993;6:3427–3437. doi: 10.1111/j.1365-2958.1992.tb02210.x. [DOI] [PubMed] [Google Scholar]
  • 10.Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli. Infect Immun. 1992;60:3953–3961. doi: 10.1128/iai.60.10.3953-3961.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Donnenberg MS, Tacket CO, James SP, Losonsky G, Nataro JP, Wassermann SS, Kaper JB, Levine MM. Role of eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Invest. 1993;92:1412–1417. doi: 10.1172/JCI116717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Donnenberg MS, Yu J, Kaper JB. A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J Bacteriol. 1993;175:4670–4680. doi: 10.1128/jb.175.15.4670-4680.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Dytoc M, Fedorko L, Sherman PM. Signal transduction in human epithelial cells infected with attaching and effacing Escherichia coli in vitro. Gastroenterology. 1994;106:1150–1161. doi: 10.1016/0016-5085(94)90004-3. [DOI] [PubMed] [Google Scholar]
  • 14.Eveillard M, Fourel V, Barc MH, Karjalainen T, Bourlioux P, Servin A. Identification and characterisation of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte-like Caco-2 and mucus-secreting HT29 cells in culture. Mol Microbiol. 1993;7:371–381. doi: 10.1111/j.1365-2958.1993.tb01129.x. [DOI] [PubMed] [Google Scholar]
  • 15.Falkow S, Isberg RR, Portnoy DA. The interaction of bacteria with mammalian cells. Annu Rev Cell Biol. 1992;8:333–363. doi: 10.1146/annurev.cb.08.110192.002001. [DOI] [PubMed] [Google Scholar]
  • 16.Fantini J, Cook DG, Nathanson N, Spitalnik SL, Gonzalezscarano F. Infection of colonic epithelial cell lines by type-1 human immunodeficiency virus is associated with cell surface expression of galactoceramide, a potential alternative gp 120 receptor. Proc Natl Acad Sci USA. 1993;90:2700–2704. doi: 10.1073/pnas.90.7.2700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Fantini J, Yahi N, Baghdiguian S, Chermann JC. Human colon epithelial cells productively infected with human immunodeficiency virus show impaired differentiation and altered secretion. J Virol. 1992;66:580–585. doi: 10.1128/jvi.66.1.580-585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Fantini J, Yahi N, Chermann JC. Human immunodefi-ciency virus can infect the apical and basolateral surfaces of human colonic epithelial cells. Proc Natl Acad Sci USA. 1991;88:9297–9301. doi: 10.1073/pnas.88.20.9297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Fath KR, Mamajiwalia SN, Burgess DR. The cytoskeleton in development of epithelial cell polarity. J Cell Sci. 1993;17:65–73. doi: 10.1242/jcs.1993.supplement_17.10. [DOI] [PubMed] [Google Scholar]
  • 20.Fogh J, Fogh JM, Orfeo T. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59:221–226. doi: 10.1093/jnci/59.1.221. [DOI] [PubMed] [Google Scholar]
  • 21.Foubister V, Rosenshine I, Finlay BB. A diarrheal pathogen, enteropathogenic Escherichia coli (EPEC), triggers a flux of inositol phosphates in infected epithelial cells. J Exp Med. 1994;179:993–998. doi: 10.1084/jem.179.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Francis CL, Jerse AE, Kaper JB, Falkow S. Characterization of interactions of enteropathogenic Escherichia coli 0127:H6 with mammalian cells in vitro. J Infect Dis. 1991;164:693–703. doi: 10.1093/infdis/164.4.693. [DOI] [PubMed] [Google Scholar]
  • 23.Gaillard JL, Berche P, Mounier J, Richard S, Sansonetti JP. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun. 1987;55:2822–2829. doi: 10.1128/iai.55.11.2822-2829.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Giron JA, Donnenberg MS, Martin WC, Jarvis KG, Kaper JB. Distribution of the bundle-forming pilus structural fene (bfpA) among enteropathogenic Escherichia coli. J Infect Dis. 1993;168:1037–1041. doi: 10.1093/infdis/168.4.1037. [DOI] [PubMed] [Google Scholar]
  • 25.Giron JA, Suk Yue Ho A, Schoolnik GK. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science. 1991;254:710–713. doi: 10.1126/science.1683004. [DOI] [PubMed] [Google Scholar]
  • 26.Jerse AE, Gicquelais KG, Kaper JB. Plasmid and chromosomal elements involved in the pathogenesis of attaching and effacing Escherichia coli. Infect Immun. 1991;59:3869–3875. doi: 10.1128/iai.59.11.3869-3875.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Jerse AE, Yu B, Tall BD, Kaper JB. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA. 1990;87:7839–7843. doi: 10.1073/pnas.87.20.7839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kernéis S, Bernet MF, Coconnier MH, Servin AL. Adhesion of human enterotoxigenic Escherichia coli to human colonic mucus-secreting HT-29 cell subpopulation in culture. Gut. 1994;35:1449–1454. doi: 10.1136/gut.35.10.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kernéis S, Chauvière G, Darfeuille-Michaud A, Aubel D, Co-connier MH, Joly B, Servin AL. Expression of receptors for enterotoxigenic Escherichia coli during enterocytic differentiation of human polarized intestinal epithelial cells in culture. Infect Immun. 1992;60:2572–2580. doi: 10.1128/iai.60.7.2572-2580.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kernéis S, Gabastout JM, Bernet MF, Coconnier MH, Nowicki BJ, Servin AL. Cell-association of Escherichia coli bearing adhesins of the Dr family with human fluid-transporting and mucus-secreting cell lines in culture. FEMS Microbiol Lett. 1994;119:27–32. doi: 10.1111/j.1574-6968.1994.tb06862.x. [DOI] [PubMed] [Google Scholar]
  • 31.Knutton S, Baldwin T, Williams PH, Mc Neish AS. Actin accumulation at sites of bacterial adhesion to tissue culture cells: Basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun. 1989;57:1290–1298. doi: 10.1128/iai.57.4.1290-1298.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Knutton S, Lloyd DR, Mc Neish AS. Adhesion of enteropathogenic Escherichia coli to human intestinal entero- cytes and cultured human intestinal mucosa. Infect Immun. 1984;55:69–77. doi: 10.1128/iai.55.1.69-77.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Laburthe M, Rousset M, Rouyer-Fessard C, Couvineau A, Chantret I, Chevalier G, Zweibaum A. Development of asoactive intestinal peptide-responsive adenylate cyclase during enterocytic differentiation of Caco-2 cells in culture. J Biol Chem. 1987;262:10810–10814. [PubMed] [Google Scholar]
  • 34.Le Bivic A, Quaroni A, Nichols B, Rodriguez-Boulan E. Biogenetic pathways of plasma membrane proteins in Caco-2, a human intestinal epithelial cell line. J Cell Biol. 1990;81:1351–1361. doi: 10.1083/jcb.111.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Leiser J, Molitoris BA. Disease processes in epithelia: the role of the actin cytoskeleton and altered surface membrane polarity. Biochim Biophys Acta. 1993;1225:1–13. doi: 10.1016/0925-4439(93)90115-h. [DOI] [PubMed] [Google Scholar]
  • 36.Levine MM. Escherichia col. that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive and enteroadherent. J Infect Dis. 1987;155:377–389. doi: 10.1093/infdis/155.3.377. [DOI] [PubMed] [Google Scholar]
  • 37.Louvard D, Kedinger M, Hauri HP. The differentiating intestinal epithelial cells: establishment and maintenance of functions through interactions between cellular structures. Annu Rev Cell Biol. 1992;8:157–195. doi: 10.1146/annurev.cb.08.110192.001105. [DOI] [PubMed] [Google Scholar]
  • 38.Mahraoui L, Rousset M, Dussaulx E, Darmoul D, Zweibaum A, Brot-Laroche E. Expression and localization of GLUT-5 in Caco-2 cells, human small intestine, and colon. Am J Physiol. 1992;263:G312–G381. doi: 10.1152/ajpgi.1992.263.3.G312. [DOI] [PubMed] [Google Scholar]
  • 39.Manjarrez-Hernandez HA, Baldwin TJ, Aitken A, Knutton S, Williams PH. Intestinal epithelial cell protein phosphorylation in enteropathogenic Escherichia coli diarrhoea. Lancet. 1992;339:521–523. doi: 10.1016/0140-6736(92)90340-9. [DOI] [PubMed] [Google Scholar]
  • 40.Mann EA, Cohen MB, Giannella RA. Comparison of receptors for Escherichia coli heat-stable enterotoxin: novel receptor present in IEC-6 cells. Am J Physiol. 1993;264:G172–G178. doi: 10.1152/ajpgi.1993.264.1.G172. [DOI] [PubMed] [Google Scholar]
  • 41.Matter K, Brauchbar M, Bucher K, Hauri HP. Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco-2) Cell. 1990;60:429–437. doi: 10.1016/0092-8674(90)90594-5. [DOI] [PubMed] [Google Scholar]
  • 42.Molitoris BA, Nelson WJ. Alterations in the establish-ment and maintenance of epithelial cell polarity as a basis for disease processes. J Clin Invest. 1990;85:3–9. doi: 10.1172/JCI114427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. Attaching and effacing activities of rabbit and hu-man enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun. 1983;41:1340–1351. doi: 10.1128/iai.41.3.1340-1351.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Mounier J, Vasselon T, Hellio R, Lesourd M, Sansonetti PJ. Shigella flexneri enters human colonic Caco-2 epithelial cell through the basolateral pole. Infect Immun. 1992;60:237–248. doi: 10.1128/iai.60.1.237-248.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Neeser JR, Chambaz A, Golliard M, Link-Amster H, Fryder V, Kolodziejczyk E. Adhesion of colonization antigen factor antigen II-positive enterotoxigenic Escherichia coli strains to human enterocyte-like differentiated HT-29 cells: a basis for host-pathogen interactions in the gut. Infect Immun. 1989;57:3727–3734. doi: 10.1128/iai.57.12.3727-3734.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Ogier-Denis E, Blais A, Houri JJ, Voisin T, Trugnan G, Codogno P. The emermenge of a basolateral l-deoxy-mannojirimycin-sensitivemannose carrier is a function of intestinal epithelial cell differentiation. J Biol Chem. 1993;269:4285–4290. [PubMed] [Google Scholar]
  • 47.Paris H, Bouscarel B, Cortinovis C, Murat JC. Growthrelated variation of α2-adrenergic receptivity in the HT-29 ademocarcinoma cell-line from human colon. FEBS Lett. 1985;814:82–86. doi: 10.1016/0014-5793(85)80658-x. [DOI] [PubMed] [Google Scholar]
  • 48.Peterson MD, Bement WM, Mooseker MS. An in vitro model for the analysis of intestinal brush border assembly. II. Changes in expression and localization of brush border proteins during cell contact-induced brush border assembly in Caco–2BBe. J Cell Sci. 1993;105:461–472. doi: 10.1242/jcs.105.2.461. [DOI] [PubMed] [Google Scholar]
  • 49.Peterson MD, Mooseker MS. An in vitro model for the analysis of intestinal brush border assembly. I. Ultrastructural analysis of cell contact-induced brush border assembly in CacO–2BBE. J Cell Sci. 1993;105:445–460. doi: 10.1242/jcs.105.2.445. [DOI] [PubMed] [Google Scholar]
  • 50.Pinto M, Appay S, Simon-Assmann P, Chevalier G, Dracopoli N, Fogh J, Zweibaum A. Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium. Biol Cell. 1982;44:193–196. [Google Scholar]
  • 51.Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell. 1983;47:323–330. [Google Scholar]
  • 52.Robins-Browe RM. Traditional enteropathogenic Escherichia coli of infantile diarrhea. Rev Infect Dis. 1987;9:28–53. doi: 10.1093/clinids/9.1.28. [DOI] [PubMed] [Google Scholar]
  • 53.Rosenshine I, Donnenberg MS, Kaper JB, Finlay BB. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 1992;11:3551–3560. doi: 10.1002/j.1460-2075.1992.tb05438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Scaletsky ICA, Silva MLM, Trabulsi LR. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun. 1984;45:534–536. doi: 10.1128/iai.45.2.534-536.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Semenza G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocyte and tubuli. Annu Rev Cell Biol. 1986;2:255–314. doi: 10.1146/annurev.cb.02.110186.001351. [DOI] [PubMed] [Google Scholar]
  • 56.Sohel I, Puente JL, Murray WJ, Vuopio-Varkila J, Schoolnik GK. Cloning and characterization of the bundle-forming pili gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes. Mol Microbiol. 1993;7:563–575. doi: 10.1111/j.1365-2958.1993.tb01147.x. [DOI] [PubMed] [Google Scholar]
  • 57.Svensson L, Finlay BB, Bass D, von Bonsdoff CH, Greenberg HB. Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J Virol. 1991;65:4190–4197. doi: 10.1128/jvi.65.8.4190-4197.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Tucker SP, Thornton CL, Wimmer E, Compans RW. Bidirectional entry of poliovirus into polarized epithelial cells. J Virol. 1993;67:29–38. doi: 10.1128/jvi.67.1.29-38.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Vuopio-Varkila J, Schoolnik GK. Localized adherence by enteropathogenic Escherichia coli is an inducible pheno-type associated with the expression of new outer membrane proteins. J Exp Med. 1991;174:1167–1177. doi: 10.1084/jem.174.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Yeager CL, Ashmun RA, Wiliams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357:420–422. doi: 10.1038/357420a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zweibaum A, Laburthe M, Grasset E, Louvard D. Use of cultured cell lines in studies of intestinal cell differentiation and function. In: Schultz SJ, Field M, Frizell RA, editors. IV. Alan Liss; New York: 1991. pp. 223–255. (Hand-book of Physiology. The Gastrointestinal System). Intestinal Absorption and Secretion. [Google Scholar]
  • 62.Zweibaum A, Pinto M, Chevalier G, Dussaulx E, Triadou N, Lacroix B, Haffen K, Brun JL, Rousset M. Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J Cell Physiol. 1985;122:21–29. doi: 10.1002/jcp.1041220105. [DOI] [PubMed] [Google Scholar]

Articles from Differentiation; Research in Biological Diversity are provided here courtesy of Elsevier

RESOURCES