Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2006 Nov 6;35:63–99. doi: 10.1016/S0065-2423(01)35015-1

Cystatin C-Properties and use as diagnostic marker

Anders O Grubb 1
PMCID: PMC7130541  PMID: 11040958

Abstract

This chapter focuses on the most well characterized inhibitors—cystatin C—and provide some information on its structure, biochemical properties, its role in normal and abnormal physiological processes, as well as on its use as a diagnostic marker. A major part of the cysteine proteases are evolutionary related to the structurally well–defined cysteine protease papain and are called papain–like cysteine proteases. The biological roles and the cystatin superfamily inhibitors of papain–like cystein proteases are also discussed. The aminoacid sequence and schematic structure of human cystatin C is also presented. The evolutionary relationships among all known inhibitory active human cystatins and kininogen cystatin domains are diagrammatically represented. The distribution of cystatins in body fluids and additional functions attributed to cystatin C are described. The serum or plasma cystatin C is used as a marker for glomerular filtration rate (GFR). The urine cystatin C is used as a marker for proximal tubular damage. The two types of brain hemorrhage associated with Cystatin C amyloid deposits are also demonstrated. The conditions connected with deposition of amyloid β–protein in cystatin C and cerebral hemorrhage is also provided.

References

  1. Abrahamson M., Barrett A.J., Salvesen G., Grubb A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 1986;261(24):11282–11289. [PubMed] [Google Scholar]
  2. Abrahamson M., Dalboge H., Olafsson I., Carlsen S., Grubb A. Efficient production of native, biologically active human cystatin C by Escherichia coli. FEBS Lett. 1988;236(1):14–18. doi: 10.1016/0014-5793(88)80276-x. [DOI] [PubMed] [Google Scholar]
  3. Abrahamson M., Grubb A., Olafsson I., Lundwall A. Molecular cloning and sequence analysis of cDNA coding for the precursor of the human cysteine proteinase inhibitor cystatin C. FEBS Lett. 1987;216(2):229–233. doi: 10.1016/0014-5793(87)80695-6. [DOI] [PubMed] [Google Scholar]
  4. Abrahamson M., Grubb A. Vol. 91. 1994. Increased body temperature accelerates aggregation of the Leu-68→Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy; pp. 1416–1420. (Proc. Natl. Acad. Sci. (USA)). (4) [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Abrahamson M., Islam M.Q., Szpirer J., Szpirer C., Levan G. The human cystatin C gene (CST3), mutated in hereditary cystatin C amyloid angiopathy, is located on chromosome 20. Hum. Genet. 1989;82(3):223–226. doi: 10.1007/BF00291159. [DOI] [PubMed] [Google Scholar]
  6. Abrahamson M., Jonsdottir S., Olafsson I., Jensson O., Grubb A. Hereditary cystatin C amyloid angiopathy: Identification of the disease-causing mutation and specific diagnosis by polymerase chain reaction based analysis. Hum. Genet. 1992;89(4):377–380. doi: 10.1007/BF00194306. [DOI] [PubMed] [Google Scholar]
  7. Abrahamson M., Olafsson I., Palsdottir A., Ulvbäck M., Lundwall Å. Structure and expression of the human cystatin C gene. Biochem. J. 1990;268(2):287–294. doi: 10.1042/bj2680287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Abrahamson M., Ritonja A., Brown M.A., Grubb A., Machleidt W., Barrett A.J. Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J. Biol. Chem. 1987;262(20):9688–9694. [PubMed] [Google Scholar]
  9. Abrahamson M. Cystatins. Meth. Enzymol. 1994;244:685–700. doi: 10.1016/0076-6879(94)44051-4. [DOI] [PubMed] [Google Scholar]
  10. Alvarez-Fernandez M., Barrett A.J., Gerhartz B., Dando P.M., Ni J., Abrahamson M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999;274(27):19195–19203. doi: 10.1074/jbc.274.27.19195. [DOI] [PubMed] [Google Scholar]
  11. Anders K.H., Wang Z.Z., Kornfeld M., Gray F., Soontomniyomkij V. Giant cell arteritis in association with cerebral amyloid angiopathy: Immunohistochemical and molecular studies. Hum. Pathol. 1997;28(11):1237–1246. doi: 10.1016/s0046-8177(97)90196-9. [published erratum appears in Hum. Pathol.29(2), 205] (1998) [DOI] [PubMed] [Google Scholar]
  12. Amason A. Apoplexie and ihre Vererbung. Acta Psychiatr Neural. 1935;(Suppl VII):1–180. [Google Scholar]
  13. Asgeirsson B., Haebel S., Thorsteinsson L., Helgason E., Gudmundsson K.O. Hereditary cystatin C amyloid angiopathy: Monitoring the presence of the Leu-68-Gln cystatin C variant in cerebrospinal fluids and monocyte cultures by MS. Biochem. J. 1998;329:497–503. doi: 10.1042/bj3290497. (Pt 3) [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Balbin M., Grubb A., Cystatin D. In: Human Protein Data. Haeberli A., editor. VCH Verlagsgesellschaft mbH; Weinheim: 1995. [Google Scholar]
  15. Barrett A.J., Davies M.E., Grubb A. The place of human γ-trace (cystatin C) amongst the cysteine proteinase inhibitors. Biochem. Biophys. Res. Commun. 1984;120(2):631–636. doi: 10.1016/0006-291x(84)91302-0. [DOI] [PubMed] [Google Scholar]
  16. Barrett A.J., Fritz H., Grubb A., Isemura S., Färvinen M. Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem. J. 1986;236(1):312. doi: 10.1042/bj2360312. [letter] [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Barrett A.J., Kirschke H., Cathepsin B., Cathepsin H., Cathepsin L. Meth. Enzymol. 1981;80:535–561. doi: 10.1016/s0076-6879(81)80043-2. (Pt C) [DOI] [PubMed] [Google Scholar]
  18. Barrett A.J., Rawlings N.D., Davies M.E., Machleidt W., Salvesen G., Turk V. Cysteine proteinase inhibitors of the cystatin superfamily. In: Barrett A.J., Salvesen G., editors. Proteinase Inhibitors. Elsevier; Amsterdam: 1986. pp. 515–569. [Google Scholar]
  19. Barrett A.J., Rawlings N.D., Woessner J.F., editors. Academic Press; London & San Diego: 1998. (Handbook of Proteolytic Enzymes). [Google Scholar]
  20. Barrett A.J., Rawlings N.D. Types and families of endopeptidases. Biochem. Soc. Trans. 1991;19(3):707–715. doi: 10.1042/bst0190707. [DOI] [PubMed] [Google Scholar]
  21. Barrett A.J. Cystatin, the egg white inhibitor of cysteine proteinases. Meth. Enzymol. 1981;80:771–778. [Google Scholar]
  22. Benedikz E., Blöndal H., Gudmundsson G. Skin deposits in hereditary cystatin C amyloidosis. Virchows Arch. A Pathol. Anat. Histopathol. 1990;417(4):325–331. doi: 10.1007/BF01605784. [DOI] [PubMed] [Google Scholar]
  23. Benedikz E., Blöndal H., Johannesson G., Gudmundsson G. Dementia with nonhereditary cystatin C angiopathy. Prog. Clin. Biol. Res. 1989;317:517–522. [PubMed] [Google Scholar]
  24. Benedikz E., Merz G.S., Schwenk V., Johansen T.E., Wisniewski H.M., Rushbrook J.I. Cellular processing of the amyloidogenic cystatin C variant of hereditary cerebral hemorrhage with amyloidosis, Icelandic type. Amyloid. 1999;6(3):172–182. doi: 10.3109/13506129909007323. [DOI] [PubMed] [Google Scholar]
  25. Bespalova I.N., Adkins S., Pranzatelli M., Burmeister M. Novel cystatin B mutation and diagnostic PCR assay in an Unverricht-Lundborg progressive myoclonus epilepsy patient. Am. J. Med. Genet. 1997;74(5):467–471. doi: 10.1002/(sici)1096-8628(19970919)74:5<467::aid-ajmg1>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  26. Bieth J.G. Pathophysiological interpretation of kinetic constants of protease inhibitors. Bull. Eur. Physiopathol. Respir. 1980;16:183–197. doi: 10.1016/b978-0-08-027379-2.50020-x. (Suppl.) [DOI] [PubMed] [Google Scholar]
  27. Bjamadottir M., Grubb A., Olafsson I. Promoter-mediated, dexamethasone-induced increase in cystatin C production by HeLa cells. Scand. J. Clin. Lab. Invest. 1995;55(7):617–623. doi: 10.3109/00365519509110261. [DOI] [PubMed] [Google Scholar]
  28. Bjamadottir M., Wulff B.S., Sameni M., Sloane B.F., Keppler D. Intracellular accumulation of the amyloidogenic L68Q variant of cystatin C in NIH/3T3 cells. Mol. Pathol. 1998;51:317–326. doi: 10.1136/mp.51.6.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Björck L., Åkesson P., Bohus M., Trojnar J., Abrahamson M. Bacterial growth blocked by a synthetic peptide based on the structure of a human proteinase inhibitor. Nature. 1989;337(6205):385–386. doi: 10.1038/337385a0. [DOI] [PubMed] [Google Scholar]
  30. Björck L., Grubb A., Kjellen L. Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J. Virol. 1990;64(2):941–943. doi: 10.1128/jvi.64.2.941-943.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Björk I., Brieditis I., Raub-Segall E., Pol E., Håkansson K., Abrahamson M. The importance of the second hairpin loop of cystatin C for proteinase binding. Characterization of the interaction of Trp-106 variants of the inhibitor with cysteine proteinases. Biochemistry. 1996;35(33):10720–10726. doi: 10.1021/bi960420u. [DOI] [PubMed] [Google Scholar]
  32. Bode W., Engh R., Musil D., Thiele U., Huber R. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. Embo. J. 1988;7(8):2593–2599. doi: 10.1002/j.1460-2075.1988.tb03109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Bökenkamp A., Domanetzki M., Zinck R., Schumann G., Brodehl J. Reference values for cystatin C serum concentrations in children. Pediatr Nephrol. 1998;12(2):125–129. doi: 10.1007/s004670050419. [DOI] [PubMed] [Google Scholar]
  34. Bökenkamp A., Domanetzki M., Zinck R., Schumann G., Byrd D., Brodehl J. Cystatin C serum concentrations underestimate glomerular filtration rate in renal transplant recipients. Clin. Chem. 1999;45(10):1866–1868. [PubMed] [Google Scholar]
  35. Bökenkamp A., Domanetzki M., Zinck R., Schumann G., Byrd D., Brodehl J. Cystatin C-A new marker of glomerular filtration rate in children independent of age and height. Pediatrics. 1998;101(5):875–881. doi: 10.1542/peds.101.5.875. [DOI] [PubMed] [Google Scholar]
  36. Bostom A.G., Gohh R.Y., Bausserman L., Hakas D., Jacques P.F. Serum cystatin C as a determinant of fasting total homocysteine levels in renal transplant recipients with a normal serum creatinine. J. Am. Soc. Nephrol. 1999;10(1):164–166. doi: 10.1681/ASN.V101164. [DOI] [PubMed] [Google Scholar]
  37. Bourgeau G., Lapointe H., Peloquin P., Mayrand D. Cloning expression, and sequencing of a protease gene (tpr) from Porphyromonas gingivalis W83 in Escherichio coli. Infect. Immun. 1992;60(8):3186–3192. doi: 10.1128/iai.60.8.3186-3192.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Brzin J., Popovic T., Turk V., Borchart U., Machleidt W. Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem. Biophys. Res. Commun. 1984;118(1):103–109. doi: 10.1016/0006-291x(84)91073-8. [DOI] [PubMed] [Google Scholar]
  39. Butler E.A., Flynn F.V. The occurrence of post-gamma protein in urine: A new abnormality. J. Clin. Pathol. 1961;14:172–178. doi: 10.1136/jcp.14.2.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Cejka J., Fleischmann L.E. Post-γ-globulin: Isolation and physicochemical characterization. Arch. Biochem. Biophys. 1973;157(1):168–176. doi: 10.1016/0003-9861(73)90402-5. [DOI] [PubMed] [Google Scholar]
  41. Chagas J.R., Authie E., Serveau C., Lalmanach G., Juliano L., Gauthier F. A comparison of the enzymatic properties of the major cysteine proteinases from Trypanosoma congolense and Trypanosoma cruzi. Mol. Biochem. Parasitol. 1997;88(1–2):85–94. doi: 10.1016/s0166-6851(97)00085-6. [DOI] [PubMed] [Google Scholar]
  42. Chang J.-Y. Antithrombin. In: Haeberli A., editor. Human Protein Data. VCH Verlagsgesellschaft mbH; Weinheim: 1992. [Google Scholar]
  43. Chapman H.A., Jr., Reilly J.J., Jr., Yee R., Grubb A. Identification of cystatin C, a cysteine proteinase inhibitor, as a major secretory product of human alveolar macrophages in vitro. Am. Rev. Respir Dis. 1990;141(3):698–705. doi: 10.1164/ajrccm/141.3.698. [DOI] [PubMed] [Google Scholar]
  44. Chauhan S.S., Goldstein L.J., Gottesman M.M. Expression of cathepsin L in human tumors. Cancer Res. 1991;51(5):1478–1481. [PubMed] [Google Scholar]
  45. Chen J.M., Dando P.M., Rawlings N.D., Brown M.A., Young N.E. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J. Biol. Chem. 1997;272(12):8090–8098. doi: 10.1074/jbc.272.12.8090. [DOI] [PubMed] [Google Scholar]
  46. Cheung P.P., Kunapuli S.P., Scott C.F., Wachtfogel Y.T., Colman R.W. Genetic basis of total kininogen deficiency in Williams' trait. J. Biol. Chem. 1993;268(31):23361–23365. [PubMed] [Google Scholar]
  47. Clausen J. Vol. 107. 1961. Proteins in normal cerebrospinal fluid not found in serum; pp. 170–172. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  48. Cohen D.H., Feiner H., Jensson O., Frangione B. Amyloid fibril in hereditary cerebral hemorrhage with amyloidosis (HCHWA) is related to the gastroentero-pancreatic neuroendocrine protein, gamma trace. J. Exp. Med. 1983;158(2):623–628. doi: 10.1084/jem.158.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Colle A., Tavera C., Laurent P., Leung-Tack J., Girolami J.P. Direct radioimmunoassay of rat cystatin C: Increased urinary excretion of this cysteine proteases inhibitor during chromate nephropathy. J. Immunoassay. 1990;11(2):199–214. doi: 10.1080/01971529008053269. [DOI] [PubMed] [Google Scholar]
  50. Dalboge H., Jensen E.B., Tøttrup H., Grubb A., Abrahamson M. High-level expression of active human cystatin C in Escherichia coli. Gene. 1989;79(2):325–332. doi: 10.1016/0378-1119(89)90214-x. [DOI] [PubMed] [Google Scholar]
  51. Delaisse J.M., Eeckhout Y., Vaes G. In vivo and in vitro evidence for the involvement of cysteine proteinases in bone resorption. Biochem. Biophys. Res. Commun. 1984;125(2):441–447. doi: 10.1016/0006-291x(84)90560-6. [DOI] [PubMed] [Google Scholar]
  52. Delbridge M.L., Kelly L.E. Sequence analysis, and chromosomal localization of a gene encoding a cystatin-like protein from Drosophila melanogaster. FEBS Lett. 1990;274(1–2):141–145. doi: 10.1016/0014-5793(90)81349-s. [DOI] [PubMed] [Google Scholar]
  53. Drake F.H., Dodds R.A., James I.E., Connor J.R., Debouck C. Cathepsin K., but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 1996;271(21):12511–12516. doi: 10.1074/jbc.271.21.12511. [DOI] [PubMed] [Google Scholar]
  54. Dunn A.D., Crutchfield H.E., Dunn J.T. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L. J. Biol. Chem. 1991;266(30):20198–20204. [PubMed] [Google Scholar]
  55. Ekiel I., Abrahamson M., Fulton D.B., Lindahl P., Storer A.C. NMR structural studies of human cystatin C dimers and monomers. J. Mol. Biol. 1997;271(2):266–277. doi: 10.1006/jmbi.1997.1150. [DOI] [PubMed] [Google Scholar]
  56. Erlandsen E.J., Randers E., Kristensen J.H. Evaluation of the Dade Behring N Latex Cystatin C assay on the Dade Behring Nephelometer II System. Scand. J. Clin. Lab. Invest. 1999;59(1):1–8. doi: 10.1080/00365519950185940. [DOI] [PubMed] [Google Scholar]
  57. Finney H., Newman D.J., Gruber W., Merle P., Price C.P. Initial evaluation of cystatin C measurement by particle-enhanced immunonephelometry on the Behring nephelometer systems (BNA, BN II) Clin. Chem. 1997;43(6):1016–1022. Pt 1. [PubMed] [Google Scholar]
  58. Freije J.P., Abrahamson M., Olafsson I., Velasco G., Grubb A., Lopez-Otin C. Structure and expression of the gene encoding cystatin D, a novel human cysteine proteinase inhibitor. J. Biol. Chem. 1991;266(30):20538–20543. [PubMed] [Google Scholar]
  59. Freije J.P., Balbin M., Abrahamson M., Velasco G., Dalboge H. Human cystatin D. cDNA cloning, characterization of the Escherichia coli expressed inhibitor, and identification of the native protein in saliva. J. Biol. Chem. 1993;268(21):15737–15744. [PubMed] [Google Scholar]
  60. Gelb B.D., Shi G.P., Chapman H.A., Desnick R.J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–1238. doi: 10.1126/science.273.5279.1236. [DOI] [PubMed] [Google Scholar]
  61. Ghiso J., Jensson O., Frangione B. Vol. 83. 1986. Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of γ-trace basic protein (cystatin C) pp. 2974–2978. (Proc. Natl. Acad. Sci. (USA)). (9) [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Gradehandt G., Ruede E. The endo/lysosomal protease cathepsin B is able to process conalbumin fragments for presentation to T cells. Immunology. 1991;74(3):393–398. [PMC free article] [PubMed] [Google Scholar]
  63. Graffagnino C., Herbstreith M.H., Roses A.D., Alberts M.J. A molecular genetic study of intracerebral hemorrhage. Arch. Neurol. 1994;51(10):981–984. doi: 10.1001/archneur.1994.00540220027011. [DOI] [PubMed] [Google Scholar]
  64. Graffagnino C., Herbstreith M.H., Schmechel D.E., Levy E., Roses A.D., Alberts M.J. Cystatin C mutation in an elderly man with sporadic amyloid angiopathy and intracerebral hemorrhage. Stroke. 1995;26(11):2190–2193. doi: 10.1161/01.str.26.11.2190. [DOI] [PubMed] [Google Scholar]
  65. Greenberg S.M. Cerebral amyloid angiopathy: Prospects for clinical diagnosis and treatment. Neurology. 1998;51(3):690–694. doi: 10.1212/wnl.51.3.690. [DOI] [PubMed] [Google Scholar]
  66. Grob D. Proteolytic enzymes. I. The control of their activity. J. Gen. Physiol. 1946;29:219–247. [PubMed] [Google Scholar]
  67. Grob D. Proteolytic enzymes. III. Further studies on protein, polypeptide and other inhibitors of serum proteinase, leucoproteinase, trypsin and papain. J. Gen. Physiol. 1949;33:103–124. doi: 10.1085/jgp.33.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Grubb A., Abrahamson M., Olafsson I., Trojnar J., Kasprzykowska R. Synthesis of cysteine proteinase inhibitors structurally based on the proteinase interacting N-terminal region of human cystatin C. Biol. Chem. Hoppe Seyler. 1990;371:137–144. (Suppl.) [PubMed] [Google Scholar]
  69. Grubb A., Jensson O., Gudmundsson G., Amason A., Löfberg H., Malm J. Abnormal metabolism of γ-trace alkaline microprotein. The basic defect in hereditary cerebral hemorrhage with amyloidosis. N. Engl. J. Med. 1984;311(24):1547–1549. doi: 10.1056/NEJM198412133112406. [DOI] [PubMed] [Google Scholar]
  70. Grubb A., Löfberg H. Vol. 79. 1982. Human γ-trace, a basic microprotein: Amino acid sequence and presence in the adenohypophysis; pp. 3024–3027. (Proc. Natl. Acad. Sci. (USA)). (9) [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Grubb A., Simonsen O., Sturfelt G., Truedsson L., Thysell H. Serum concentration of cystatin C, factor D and ßz-microglobulin as a measure of glomerular filtration rate. Acta Med. Scand. 1985;218(5):499–503. doi: 10.1111/j.0954-6820.1985.tb08880.x. [DOI] [PubMed] [Google Scholar]
  72. Grubb A. Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin. Nephrol. 1992;38(Suppl. 1):20–27. [PubMed] [Google Scholar]
  73. Gudmundsson G., Hallgrimsson J., Jonasson T.A., Bjarnason O. Hereditary cerebral hemorrhage with amyloidosis. Brain. 1972;95:387–404. doi: 10.1093/brain/95.2.387. [DOI] [PubMed] [Google Scholar]
  74. Haan J., Maat-Schieman M.L., van Duinen S.G., Jensson O., Thorsteinsson L., Roos R.A. Co-localization of β/A4 and cystatin C in cortical blood vessels in Dutch, but not in Icelandic hereditary cerebral hemorrhage with amyloidosis. Acta Neurol. Scand. 1994;89(5):367–371. doi: 10.1111/j.1600-0404.1994.tb02648.x. [DOI] [PubMed] [Google Scholar]
  75. Halfon S., Ford J., Foster J., Dowling L., Lucian L. Leukocystatin, a new class II cystatin expressed selectively by hematopoietic cells. J. Biol. Chem. 1998;273(26):16400–16408. doi: 10.1074/jbc.273.26.16400. [DOI] [PubMed] [Google Scholar]
  76. Hall A., Abrahamson M., Grubb A., Trojnar J., Kania P. Cystatin C based peptidyl diazomethanes as cysteine proteinase inhibitors: Influence of the peptidyl chain length. J. Enzyme Inhib. 1992;6(2):113–123. doi: 10.3109/14756369209040742. [DOI] [PubMed] [Google Scholar]
  77. Hall A., Dalboge H., Grubb A., Abrahamson M. Importance of the evolutionarily conserved glycine residue in the N-terminal region of human cystatin C (Gly-II) for cysteine endopeptidase inhibition. Biochem. J. 1993;291:123–129. doi: 10.1042/bj2910123. (Pt 1) [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Hall A., Ekiel I., Mason R.W., Kasprzykowski F., Grubb A., Abrahamson M. Structural basis for different inhibitory specificities of human cystatins C and D. Biochemistry. 1998;37(12):4071–4079. doi: 10.1021/bi971197j. [DOI] [PubMed] [Google Scholar]
  79. Hall A., Håkansson K., Mason R.W., Grubb A., Abrahamson M. Structural basis for the biological specificity of cystatin C. Identification of leucine 9 in the N-terminal binding region as a selectivity-conferring residue in the inhibition of mammalian cysteine peptidases. J. Biol. Chem. 1995;270(10):5115–5121. doi: 10.1074/jbc.270.10.5115. [DOI] [PubMed] [Google Scholar]
  80. Helin I., Axenram M., Grubb A. Serum cystatin C as a determinant of glomerular filtration rate in children. Clin. Nephrol. 1998;49(4):221–225. [PubMed] [Google Scholar]
  81. Heymsfield S.B., Arteaga C., McManus C., Smith J., Moffitt S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr. 1983;37(3):478–494. doi: 10.1093/ajcn/37.3.478. [DOI] [PubMed] [Google Scholar]
  82. Hochwald G.M., Pepe A.J., Thorbecke G.J. Vol. 124. 1967. Trace proteins in biological fluids. IV. Physicochemical properties and sites of formation of γ-trace and β-trace proteins; pp. 961–966. (Proc. Soc. Exp. Biol. Med.). (3) [DOI] [PubMed] [Google Scholar]
  83. Hochwald G.M., Thorbecke G.J. Vol. 109. 1962. Use of an antiserum against cerebrospinal fluid in demonstration of trace proteins in biological fluids; pp. 91–95. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  84. Imort M., Zuhlsdorf M., Feige U., Hasilik A., von Figura K. Biosynthesis and transport of lysosomal enzymes in human monocytes and macrophages. Effects of ammonium chloride, zymosan and tunicamycin. Biochem. J. 1983;214(3):671–678. doi: 10.1042/bj2140671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Isemura S. Cystatins S, SN, SA. In: Haeberli A., editor. Human Protein Data. VCH Verlagsgesellschaft mbH; Weinheim: 1995. [Google Scholar]
  86. Itoh Y., Yamada M., Hayakawa M., Otomo E., Miyatake T. Cerebral amyloid angiopathy: A significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly. J. Neurol. Sci. 1993;116(2):135–141. doi: 10.1016/0022-510x(93)90317-r. [DOI] [PubMed] [Google Scholar]
  87. Itoh Y., Yamada M. Cerebral amyloid angiopathy in the elderly: The clinicopathological features, pathogenesis, and risk factors. J. Med. Dent. Sci. 1997;44(1):11–19. [PubMed] [Google Scholar]
  88. Jacobsson B., Lignelid H., Bergerheim U.S. Transthyretin and cystatin Care catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas. Histopathology. 1995;26(6):559–564. doi: 10.1111/j.1365-2559.1995.tb00275.x. [DOI] [PubMed] [Google Scholar]
  89. Jensson O., Gudmundsson G., Arnason A., Blöndal H., Petursdottir I. Hereditary cystatin C (γ-trace) amyloid angiopathy of the CNS causing cerebral hemorrhage. Acta Neurol. Scand. 1987;76:102–114. doi: 10.1111/j.1600-0404.1987.tb03553.x. [DOI] [PubMed] [Google Scholar]
  90. Jensson O., Gudmundsson G., Arnason A., Thorsteinsson L., Blöndal H. Hereditary cystatin C (γ-trace) amyloid angiopathy of the central nervous system causing cerebral hemorrhage. Acta Neural. Scand. 1986;73:308. doi: 10.1111/j.1600-0404.1987.tb03553.x. [DOI] [PubMed] [Google Scholar]
  91. Jung K., Jung M. Cystatin C: A promising marker of glomerular filtration rate to replace creatinine. Nephron. 1995;70(3):370–371. doi: 10.1159/000188621. [letter] [DOI] [PubMed] [Google Scholar]
  92. Kabanda A., Jadoul M., Lauwerys R., Bernard A., van Ypersele de Strihou C. Low molecular weight proteinuria in Chinese herbs nephropathy. Kidney Int. 1995;48(5):1571–1576. doi: 10.1038/ki.1995.449. [DOI] [PubMed] [Google Scholar]
  93. Kabanda A., Vandercam B., Bernard A., Lauwerys R., van Ypersele de Strihou C. Low molecular weight proteinuria in human immunodeficiency virus- infected patients. Am. J. Kidney Dis. 1996;27(6):803–808. doi: 10.1016/s0272-6386(96)90517-x. [DOI] [PubMed] [Google Scholar]
  94. Keevil B.G., Kilpatrick E.S., Nichols S.P., Maylor P.W. Biological variation of cystatin C: Implications for the assessment of glomerular filtration rate. Clin. Chem. 1998;44(7):1535–1539. [PubMed] [Google Scholar]
  95. Kimura M. Vol. 78. 1981. Estimation of evolutionary distances between homologous nucleotide sequences; pp. 454–458. (Proc. Natl. Acad. Sci. (USA)). (1) [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kjellin K.G., Stibler H. Protein patterns of cerebrospinal fluid in hereditary ataxias and hereditary spastic paraplegia. J. Neurol. Sci. 1975;25(1):65–74. doi: 10.1016/0022-510x(75)90187-2. [DOI] [PubMed] [Google Scholar]
  97. Kondo H., Abe K., Nishimura I., Watanabe H., Emori Y., Arai S. Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin—II. J. Biol. Chem. 1990;265(26):15832–15837. [PubMed] [Google Scholar]
  98. Korant B., Towatari T., Kelley M., Brzin J., Lenarcic B., Turk V. Interactions between a viral protease and cystatins. Biol. Chem. Hoppe Segler. 1988;369:281–286. (Suppl.) [PubMed] [Google Scholar]
  99. Kozak M., Jankowska E., Janowski R., Grzonka Z., Grubb A. Expression of a selenomethionyl derivative and preliminary crystallographic studies of human cystatin C. Acta Crystallogr D Biol. Crystallogr. 1999;55(11):1939–1942. doi: 10.1107/S090744499901121X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Kyhse-Andersen J., Schmidt C., Nordin G., Andersson B., Nilsson-Ehle P. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin. Chem. 1994;40(10):1921–1926. [PubMed] [Google Scholar]
  101. Lafreniere R.G., Rochefort D.L., Chretien N., Rommens J.M., Cochius J.I. Unstahle insertion in the 5′ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPMI. Nat. Genet. 1997;15(3):298–302. doi: 10.1038/ng0397-298. [DOI] [PubMed] [Google Scholar]
  102. Lalioti M.D., Mirotsou M., Buresi C., Peitsch M.C., Rossier C. Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPMI) Am. J. Hum. Genet. 1997;60(2):342–351. [PMC free article] [PubMed] [Google Scholar]
  103. Laterre E.C., Heremans J.F., Carbonara A. Immunological comparison of some proteins found in cerebrospinal fluid, urine and extracts from brain and kidney. Clin. Chim. Acta. 1964;10:197–209. doi: 10.1016/0009-8981(64)90136-6. [DOI] [PubMed] [Google Scholar]
  104. Lee H.J., Shieh C.K., Gorbalenya A.E., Koonin E.V., La Monica N. The complete sequence (22 kilobases) of routine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991;180(2):567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lemer U.H., Grubb A. Human cystatin C, a cysteine proteinase inhibitor, inhibits bone resorption in vitro stimulated by parathyroid hormone and parathyroid hormone-related peptide of malignancy. J. Bone Miner. Res. 1992;7(4):433–440. doi: 10.1002/jbmr.5650070411. [DOI] [PubMed] [Google Scholar]
  106. Leung-Tack J., Tavera C., Gensac M.C., Martinez J., Colle A. Modulation of phagocytosis-associated respiratory burst by human cystatin C: Role of the N-terminal tetrapeptide Lys-Pro-Pro-Arg. Exp. Cell. Res. 1990;188(1):16–22. doi: 10.1016/0014-4827(90)90272-c. [DOI] [PubMed] [Google Scholar]
  107. Leung-Tack J., Tavera C., Martinez J., Colle A. Neutrophil chemotactic activity is modulated by human cystatin C, an inhibitor of cysteine proteases. Inflammation. 1990;14(3):247–258. doi: 10.1007/BF00915809. [DOI] [PubMed] [Google Scholar]
  108. Levey A.S., Perrone R.D., Madias N.E. Serum creatinine and renal function. Annu. Rev. Med. 1988;39:465–490. doi: 10.1146/annurev.me.39.020188.002341. [DOI] [PubMed] [Google Scholar]
  109. Lignelid H., Collins V.P., Jacobsson B. Cystatin C and transthyretin expression in normal and neoplastic tissues of the human brain and pituitary. Acta Neuroputhol. (Berl.) 1997;93(5):494–500. doi: 10.1007/s004010050644. [DOI] [PubMed] [Google Scholar]
  110. Lignelid H., Jacobsson B. Cystatin C in the human pancreas and gut: An immunohistochemical study of normal and neoplastic tissues. Virchows Arch. A Pathol. Anat. Histopothol. 1992;421(6):491–495. doi: 10.1007/BF01606878. [DOI] [PubMed] [Google Scholar]
  111. Lindahl P., Nycander M., Ylinenjärvi K., Pol E., Björk I. Characterization by rapidkinetic and equilibrium methods of the interaction between N-terminally truncated forms of chicken cystatin and the cysteine proteinases papain and actindin. Biochem. J. 1992;286:165–171. doi: 10.1042/bj2860165. (Pt 1) [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Lindahl P., Ripoll D., Abrahamson M., Mort J.S., Storer A.C. Evidence for the interaction of valise-10 in cystatin C with the S2 subsite of cathepsin B. Biochemists. 1994;33(14):4384–4392. doi: 10.1021/bi00180a036. [DOI] [PubMed] [Google Scholar]
  113. Löfberg H., Grubb A.O., Nilsson E.K., Jensson O., Gudmundsson G. Immunohistochemical characterization of the amyloid deposits and quantitation of pertinent cerebrospinal fluid proteins in hereditary cerebral hemorrhage with amyloidosis. Stroke. 1987;18(2):431–440. doi: 10.1161/01.str.18.2.431. [DOI] [PubMed] [Google Scholar]
  114. Löfberg H., Grubb A.O., Sveger T., Olsson J.E. The cerebrospinal fluid and plasma concentrations of γ-trace and β2-microglobulin at various ages and in neurological disorders. J. Neurol. 1980;223(3):159–170. doi: 10.1007/BF00313180. [DOI] [PubMed] [Google Scholar]
  115. Löfberg H., Grubb A.O. Quantitation of γ-trace in human biological fluids: Indications for production in the central nervous system. Scand. J. Clin. Lab. Invest. 1979;39(7):619–626. doi: 10.3109/00365517909108866. [DOI] [PubMed] [Google Scholar]
  116. Löfberg H., Grubb A.O., Brun A. Human brain cortical neurons contain γ-trace. Rapid isolation, immunohistochemical and physicochemical characterization of human γ-trace. Biomed. Res. 1981;2:298–306. [Google Scholar]
  117. Luaces A.L., Barrett A.J. Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica. Biochem. J. 1988;250(3):903–909. doi: 10.1042/bj2500903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. MacPherson C.F.C., Cosgrove B.R. Immunochemical evidence for a gamma globulin peculiar to cerebrospinal fluid. Can. J. Biochem. 1961;39:1567–1574. doi: 10.1139/o61-170. [DOI] [PubMed] [Google Scholar]
  119. MacPherson C.F.C. Purification of the gamma globulin characteristic of cerebrospinal fluid. Can. J. Biochem. 1962;40:1811–1818. [Google Scholar]
  120. Manoury B., Hewitt E.W., Morrice N., Dando P.M., Barrett A.J., Watts C. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature. 1998;396(6712):695–699. doi: 10.1038/25379. [DOI] [PubMed] [Google Scholar]
  121. Manuel Y. University of Lyon; Lyon, France: 1965. Les proteines du liquid cephalorachidien. [Google Scholar]
  122. Maruyama K., Ikeda S., Ishihara T., Allsop D., Yanagisawa N. Immunohistochemical characterization of cerebrovascular amyloid in 46 autopsied cases using antibodies to β protein and cystatin C. Stroke. 1990;21(3):397–403. doi: 10.1161/01.str.21.3.397. [DOI] [PubMed] [Google Scholar]
  123. Maruyama K., Kametani F., Ikeda S., Ishihara T., Yanagisawa N. Characterization of amyloid fibril protein from a case of cerebral amyloid angiopathy showing immunohistochemical reactivity for both β protein and cystatin C. Neurosci. Lett. 1992;144(1–2):38–42. doi: 10.1016/0304-3940(92)90710-o. [DOI] [PubMed] [Google Scholar]
  124. Mason R.W., Sol-Church K., Abrahamson M. Amino acid substitutions in the N-terminal segment of cystatin C create selective protein inhibitors of lysosomal cysteine proteinases. Biochem. J. 1998;330:833–838. doi: 10.1042/bj3300833. (Pt 2) [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. McCarron M.O., Nicoll J.A.R., Stewart J., Ironside J.W., Mann D.M.A. Absence of cystatin C mutation in sporadic cerebral amyloid angiopathy-related hemorrhage. Neurology. 2000;54:242–244. doi: 10.1212/wnl.54.1.242. [DOI] [PubMed] [Google Scholar]
  126. Müller-Esterl W. Kininogens. In: Haeberli A., editor. Human Protein Data. VCH Verlagsgesellschaft mbH; Weinheim: 1992. [Google Scholar]
  127. Mussap M., Ruzzante N., Varagnolo M., Plebani M. Quantitative automated particleenhanced immunonephelometric assay for the routinary measurement of human cystatin C. Clin. Chem. Lab. Med. 1998;36(11):859–865. doi: 10.1515/CCLM.1998.151. [DOI] [PubMed] [Google Scholar]
  128. Nagai A., Kobayashi S., Shimode K., Imaoka K., Umegae N. No mutations in cystatin C gene in cerebral amyloid angiopathy with cystatin C deposition. Mol. Chem. Neuropathol. 1998;33(1):63–78. doi: 10.1007/BF02815860. [DOI] [PubMed] [Google Scholar]
  129. Newman D.J., Thakkar H., Edwards R.G., Wilkie M., White T. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995;47(1):312–318. doi: 10.1038/ki.1995.40. [DOI] [PubMed] [Google Scholar]
  130. Ni J., Abrahamson M., Zhang M., Fernandez M.A., Grubb A. Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J. Biol. Chem. 1997;272(16):10853–10858. doi: 10.1074/jbc.272.16.10853. [DOI] [PubMed] [Google Scholar]
  131. Ni J., Fernandez M.A., Danielsson L., Chillakuru R.A., Zhang J. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J. Biol. Chem. 1998;273(38):24797–24804. doi: 10.1074/jbc.273.38.24797. [DOI] [PubMed] [Google Scholar]
  132. Nilsson-Ehle P., Dahlbeck M.-L., Miljeteig L., Rauer O., Resman M. Biological variation of cystatin C concentration in serum. Scand. J. Clin. Lab. Invest. 1996;56(Suppl. 225):16. [Google Scholar]
  133. Norlund L., Fex G., Lanke J., Von Schenck H., Nilsson J.E. Reference intervals for the glomerular filtration rate and cell-proliferation markers: Serum cystatin C and serum β2-microglobulin/cystatin C-ratio. Scand. J. Clin. Lab. Invest. 1997;57(6):463–470. doi: 10.3109/00365519709084595. [DOI] [PubMed] [Google Scholar]
  134. Norlund L., Grubb A., Fex G., Leksell H., Nilsson J.E. The increase of plasma homocysteine concentrations with age is partly due to the deterioration of renal function as determined by plasma cystatin C. Clin. Chem. Lab. Med. 1998;36(3):175–178. doi: 10.1515/CCLM.1998.032. [DOI] [PubMed] [Google Scholar]
  135. North M.J. The characteristics of cysteine proteinases ofparasitic protozoa. Biol. Chem. Hoppe Seyler. 1992;373(7):401–406. doi: 10.1515/bchm3.1992.373.2.401. [DOI] [PubMed] [Google Scholar]
  136. Olafsson I., Thorsteinsson L., Jensson O. The molecular pathology of hereditary cystatin C amyloid angiopathy causing brain hemorrhage. Brain Pathol. 1996;6(2):121–126. doi: 10.1111/j.1750-3639.1996.tb00795.x. [DOI] [PubMed] [Google Scholar]
  137. Otto H.-H., Schimeister T. Cysteine proteases and their inhibitors. Chem. Rev. 1997;97:133–171. doi: 10.1021/cr950025u. [DOI] [PubMed] [Google Scholar]
  138. Owen M.C., Carrell R.W. Alpha-l-proteinase inhibitor. In: Haeberli A., editor. Human Protein Data. VCH Verlagsgesellschaft mbH; Weinheim: 1992. [Google Scholar]
  139. Palsdottir A., Abrahamson M., Thorsteinsson L., Amason A., Olafsson I. Mutation in cystatin C gene causes hereditary brain haemorrhage. Lancet. 1988;2(8611):603–604. doi: 10.1016/s0140-6736(88)90641-1. [DOI] [PubMed] [Google Scholar]
  140. Pennacchio L.A., Bouley D.M., Higgins K.M., Scott M.P., Noebels J.L., Myers R.M. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat. Genet. 1998;20(3):251–258. doi: 10.1038/3059. [DOI] [PubMed] [Google Scholar]
  141. Pennacchio L.A., Lehesjoki A.E., Stone N.E., Willour V.L., Virtaneva K. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM 1) Science. 1996;271(5256):1731–1734. doi: 10.1126/science.271.5256.1731. [DOI] [PubMed] [Google Scholar]
  142. Pergande M., Jung K. Sandwich enzyme immunoassay of cystatin C in serum with commercially available antibodies. Clin. Chem. 1993;39(9):1885–1890. [PubMed] [Google Scholar]
  143. Perrone R.D., Madias N.E., Levey A.S. Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 1992;38(10):1933–1953. [PubMed] [Google Scholar]
  144. Pierre P., Mellman I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell. 1998;93(7):1135–1145. doi: 10.1016/s0092-8674(00)81458-0. [DOI] [PubMed] [Google Scholar]
  145. Plebani M., Dall'Amico R., Mussap M., Montini G., Ruzzante N. Is serum cystatin C a sensitive marker of glomerular filtration rate (GFR)? A preliminary study on renal transplant patients. Renal Fail. 1998;20(2):303–309. doi: 10.3109/08860229809045115. [DOI] [PubMed] [Google Scholar]
  146. Poole A.R., Tiltman K.J., Recklies A.D., Stoker T.A. Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroaden omas. Nature. 1978;273(5663):545–547. doi: 10.1038/273545a0. [DOI] [PubMed] [Google Scholar]
  147. Randers E., Erlandsen E.J. Serum cystatin C as an endogenous marker of the renal function—A review. Clin. Chem. Lab. Med. 1999;37(4):389–395. doi: 10.1515/CCLM.1999.064. [DOI] [PubMed] [Google Scholar]
  148. Randers E., Kristensen J.H., Erlandsen E.J., Danielsen H. Serum cystatin C as a marker of the renal function. Scand. J. Clin. Lab. Invest. 1998;58(7):585–592. doi: 10.1080/00365519850186210. [DOI] [PubMed] [Google Scholar]
  149. Randers E., Krue S., Erlandsen E.J., Danielsen H., Hansen L.G. Reference interval for serum cystatin C in children. Clin. Chem. 1999;45(10):1856–1858. [PubMed] [Google Scholar]
  150. Rawlings N.D., Barrett A.J. MEROPS: The peptidase database. Nucleic Acids Res. 1999;27(1):325–331. doi: 10.1093/nar/27.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Reilly J.J., Jr., Mason R.W., Chen P., Joseph L.J., Sukhatme V.P. Synthesis and processing of cathepsin L, an elastase, by human alveolar macrophages. Biochem. J. 1989;257(2):493–498. doi: 10.1042/bj2570493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Rinne A., Rinne R., Järvinen M. Cystatin B. In: Haeberli A., editor. Human Protein Data. VCH Verlagsgesellschaft mbH; Weinheim: 1995. [Google Scholar]
  153. Rinne A. Cystatin A. In: Haeberli A., editor. Human Protein Data. VCH Verlagsgesellschaft mbH; Weinheim: 1995. (A. Haeberli, ed.) [Google Scholar]
  154. Risch L., Blumberg A., Huber A. Rapid and accurate assessment of glomerular filtration rate in patients with renal transplants using serum cystatin C. Nephrol. Dial. Transplant. 1999;14(8):1991–1996. doi: 10.1093/ndt/14.8.1991. [DOI] [PubMed] [Google Scholar]
  155. Rosenthal P.J., Lee G.K., Smith R.E. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J. Clin. Invest. 1993;91(3):1052–1056. doi: 10.1172/JCI116262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Rosenthal P.J., McKerrow J.H., Aikawa M., Nagasawa H., Leech J.H. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J. Clin. Invest. 1988;82(5):1560–1566. doi: 10.1172/JCI113766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Salvesen G., Parkes C., Abrahamson M., Grubb A., Barrett A.J. Human low-Mr Kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem. J. 1986;234(2):429–434. doi: 10.1042/bj2340429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. s2 Schwabe C., Anastasi A., Crow H., McDonald J.K., Barrett A.J. Cystatin. Amino acid sequence and possible secondary structure. Biochem. J. 1984;217(3):813–817. doi: 10.1042/bj2170813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Shemesh O., Golbetz H., Kriss J.P., Myers B.D. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28(5):830–838. doi: 10.1038/ki.1985.205. [DOI] [PubMed] [Google Scholar]
  160. Shimode K., Fujihara S., Nakamura M., Kobayashi S., Tsunematsu T. Diagnosis of cerebral amyloid angiopathy by enzyme-linked immunosorbent assay of cystatin C in cerebrospinal fluid. Stroke. 1991;22(7):860–866. doi: 10.1161/01.str.22.7.860. [DOI] [PubMed] [Google Scholar]
  161. Siersbaek-Nielsen K., Hansen J.M., Kampmann J., Kristensen M. Rapid evaluation of creatinine clearance. Lancet. 1971;1(7709):1133–1134. doi: 10.1016/s0140-6736(71)91873-3. [DOI] [PubMed] [Google Scholar]
  162. Simonsen O., Grubb A., Thysell H. The blood serum concentration of cystatin C (γ-trace) as a measure of the glomerular filtration rate. Scand. J. Clin. Lab. Invest. 1985;45(2):97–101. doi: 10.3109/00365518509160980. [DOI] [PubMed] [Google Scholar]
  163. Skeftruna A.K., Jacobsson B. Immunolocalization of cystatin C. Distribution in normal human tissues. Laboratoriet. 1993;4:8–11. (in Swedish) [Google Scholar]
  164. Sloane B.F., Rozhin J., Johnson K., Taylor H., Crissman J.D., Honn K.V. Vol. 83. 1986. Cathepsin B: Association with plasma membrane in metastatic tumors; pp. 2483–2487. (Proc. Natl. Acad. Sci. (USA)). (8) [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Sloane B.F. Cathepsin B and cystatins: evidence for a role in cancer progression. Semin. Cancer Bio. 1990;1(2):137–152. [PubMed] [Google Scholar]
  166. Sotiropoulou G., Anisowicz A., Sager R. Identification, cloning, and characterization of cystatin M, a novel cysteine proteinase inhibitor, down-regulated in breast cancer. J. Biol. Chem. 1997;272(2):903–910. doi: 10.1074/jbc.272.2.903. [DOI] [PubMed] [Google Scholar]
  167. Souverijn J.H., Peet R., Smit W.G., Serree H.M., Bruyn G.W. The HAF enigma: Origin and clinical consequences of the appearance of high alkaline fractions on isoelectric focusing patterns of cerebrospinal fluid. J. Neurol. Sci. 1990;97(1):117–128. doi: 10.1016/0022-510x(90)90102-s. [DOI] [PubMed] [Google Scholar]
  168. Stabuc B., Vrhovec L., Stabuc-Silih M., Cizej T.E. Improved prediction of decreased creatinine clearance by serum cystatin C: use in cancer patients before and during chemotherapy. Clin. Chem. 2000;46(2):193–197. [PubMed] [Google Scholar]
  169. Stickle D., Cole B., Hock K., Hruska K.A., Scott M.G. Correlation of plasma concentrations of cystatin C and creatinine to inulin clearance in a pediatric population. Clin. Chem. 1998;44(6):1334–1338. Pt 1. [PubMed] [Google Scholar]
  170. Taugner R., Buhrle C.P., Nobiling R., Kirschke H. Coexistence of renin and Cahepsin B in epithelioid cell secretory granules. Histochemistry. 1985;83(2):103–108. doi: 10.1007/BF00495138. [DOI] [PubMed] [Google Scholar]
  171. Tencer J., Thysell H., Andersson K., Grubb A. Stability of albumin, protein HC, immunoglobulin G, κ- and λ-chain immunoreactivity, orosomucoid and α1-antitrypsin in urine stored at various conditions. Scand. J. Clin. Lab. Invest. 1994;54(3):199–206. doi: 10.1080/00365519409088425. [DOI] [PubMed] [Google Scholar]
  172. Tencer J., Thysell H., Grubb A. Analysis of proteinuria: Reference limits for urine excretion of albumin, protein HC, immunoglobulin G, κ- and λ-immunorcactivity, orosomucoid and aiantitrypsin. Scand. J. Chn. Lab. Invest. 1996;56(8):691–700. doi: 10.3109/00365519609088816. [DOI] [PubMed] [Google Scholar]
  173. Tenstad O., Roald A.B., Grubb A., Aukland K. Renal handling of radiolabelled human cystatin C in the rat. Scand. J. Clin. Lab. Invest. 1996;56(5):409–414. doi: 10.3109/00365519609088795. [DOI] [PubMed] [Google Scholar]
  174. Thielemans N., Lauwerys R., Bernard A. Competition between albumin and lowmolecular-weight proteins for renal tubular uptake in experimental nephropathies. Nephron. 1994;66(4):453–458. doi: 10.1159/000187863. [DOI] [PubMed] [Google Scholar]
  175. Tian S., Kusano E., Ohara T., Tabei K., Itoh Y. Cystatin C measurement and its practical use in patients with various renal diseases. Clin. Nephrol. 1997;48(2):104–108. [PubMed] [Google Scholar]
  176. Tonelle C., Colle A., Leclercq M., Sire J., Manuel Y. The different electrophoref c forms of postγ-globulin, their antigenic identity and their structural variability. Biochem. Biopltvs. Acta. 1977;490:35–43. doi: 10.1016/0005-2795(77)90103-9. [DOI] [PubMed] [Google Scholar]
  177. Tsushima H., Mine H., Hoshika K., Kawakami Y., Hyodoh F., Ueki A. Candida albicmts produces a cystatin-type cysteine proteinase inhibitor. J. Bacterial. 1992;174(14):4807–4810. doi: 10.1128/jb.174.14.4807-4810.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Turk V., Bode W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285(2):213–219. doi: 10.1016/0014-5793(91)80804-c. [DOI] [PubMed] [Google Scholar]
  179. Turk V., Brzin J., Longer M., Ritonja A., Eropkin M. Protein inhibitors of cysteine proteinases. III. Amino-acid sequence of cystatin from chicken egg white. Hoppe Seylers Z. Physiol. Chem. 1983;364(11):1487–1496. doi: 10.1515/bchm2.1983.364.2.1487. [DOI] [PubMed] [Google Scholar]
  180. Verdot L., Lalmanach G., Vercruysse V., Hartmann S., Lucius R. Cystatins up-regulate nitric oxide release from interferon-γ-activated mouse peritoneal macrophages. J. Biol. Chem. 1996;271(45):28077–28081. doi: 10.1074/jbc.271.45.28077. [DOI] [PubMed] [Google Scholar]
  181. Vinge E., Lindergärd B., Nilsson-Ehle P., Grubb A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J. Clin. Lab. Invest. 1999;59:1–6. doi: 10.1080/00365519950185076. [DOI] [PubMed] [Google Scholar]
  182. Vinters H.V., Nishimura G.S., Secor D.L., Pardridge W.M. Immunoreactive A4 and γ-trace peptide colocalization in amyloidotic arteriolar lesions in brains of patients with Alzheimer's disease. Am. J. Pathol. 1990;137(2):233–240. [PMC free article] [PubMed] [Google Scholar]
  183. Warfel A.H., Zucker-Franklin D., Frangione B., Ghiso J. Constitutive secretion of cystatin C (γ-trace) by monocytes and macrophages and its downregulation after stimulation. J. Exp. Med. 1987;166(6):1912–1917. doi: 10.1084/jem.166.6.1912. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Advances in Clinical Chemistry are provided here courtesy of Elsevier

RESOURCES