Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;157(1):47–57. doi: 10.1016/0042-6822(87)90312-6

Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes

William Lapps 1, Brenda G Hogue 1, David A Brian 1,1
PMCID: PMC7130558  PMID: 3029965

Abstract

The 3′ end of the 20-kb genome of the Mebus strain of bovine enteric coronavirus (BCV) was copied into cDNA and cloned into the PstI site of the pUC9 vector. Four clones from the 3′ end of the genome were sequenced either completely or in part to determine the sequence of the first 2451 bases. Within this sequence were identified, in order, a 3′-noncoding region of 291 bases, the gene for a 448-amino acid nucleocapsid protein (N) having a molecular weight of 49,379, and the gene for a 230-amino acid matrix protein (M) having a molecular weight of 26,376. A third large open reading frame is contained entirely within the N gene sequence but is positioned in a different reading frame; it potentially encodes a polypeptide of 207 amino acids having a molecular weight of 23,057. A higher degree of amino acid sequence homology was found between the M proteins of BCV and MHV (87%) than between the N proteins (70%). For the M proteins of BCV and MHV, notable differences were found at the amino terminus, the most probable site of O-glycosylation, where the sequence is N-Met-Ser-Ser-Val-Thr-Thr for BCV and N-Met-Ser-Ser-Thr-Thr for MHV. BCV apparently uses two of its six potential O-glycosylation sites.

References

  1. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature (London) 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong J., Smeekens S., Rottier P. Sequence of the nucleocapsid gene from murine coronavirus MHV-A59. Nucleic Acids Res. 1983;11:833–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Auperin D.D., Romanowski V., Galinski M., Bishop D.H.L. Sequence studies of Pichinde arenavinus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J. Virol. 1984;52:897–904. doi: 10.1128/jvi.52.3.897-904.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baric R.S., Stohlman S.A., Razavi M.K., Lai M.M.C. Characterization of leader-related small RNAs in coronavirus-infected cells: Further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–33. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boursnell M.E.G., Binns M.M., Foulds I.I., Brown T.D.K. Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. J. Gen. Virol. 1985;66:573–580. doi: 10.1099/0022-1317-66-3-573. [DOI] [PubMed] [Google Scholar]
  6. Boursnell M.E.G., Brown T.D.K. Sequencing of coronavirus IBV genomic RNA: A 195-base open reading frame encoded by mRNA B. Gene. 1984;29:87–92. doi: 10.1016/0378-1119(84)90169-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boursnell M.E.G., Brown T.D.K., Binns M.M. Sequence of the membrane protein gene from avian coronavirus I BV. Virus Res. 1984;1:303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Budzilowicz C.J., Wilczynski S.P., Weiss S.R. Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3′ end of the viral mRNA leader sequence. J. Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  10. Guy J.S., Brian D.A. Bovine coronavirus genome. J. Virol. 1979;29:293–300. doi: 10.1128/jvi.29.1.293-300.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983;166:557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  12. Hogue B.G., King B., Brian D.A. Antigenic relationships among proteins of bovine coronavirus, human regulatory coronavirus OC43, and mouse hepatitis coronavirus A59. J. Virol. 1984;51:384–388. doi: 10.1128/jvi.51.2.384-388.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. House J.A. Economic impact of rotavirus and other neonatal disease agents of animals. J. Amer. Vet. Med. Assoc. 1978;173:573–576. [PubMed] [Google Scholar]
  15. James R., Bradshaw R.A. Strand separation of DNA fragments and their isolation from nondenaturing polyacrylamide gels. Anal. Biochem. 1984;140:456–458. doi: 10.1016/0003-2697(84)90193-3. [DOI] [PubMed] [Google Scholar]
  16. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. King B., Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. King B., Potts B.J., Brian D.A. Bovine coronavirus hemagglutinin protein. Virus Res. 1985;2:53–59. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klenk H.D., Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr. Top. Microbiol. Immunol. 1981;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  20. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 1983;47:1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59: mRNA structure and genetic localization in the sequence divergence from hepatotropic strain MHV-3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lapps W., Brian D.A. Oligonucleotide fingerprints of antigenically related bovine coronavirus and human coronavirus OC43. Arch. Virol. 1985;86:101–108. doi: 10.1007/BF01314116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Making S., Keck J.G., Stohlman S.A., Lai M.M.C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  26. Maxam A.M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. In: Grossman L., Moldave K., editors. Vol. 65. Academic Press; New York: 1980. pp. 499–560. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  27. Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.-D. Post-translational glycosylation of coronavirus glycoprotein E1: Inhibition by monensin. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Niemann H., Heisterberg-Moutsis G., Geyer R., Klenk H.-D., Wirth M. Glycoprotein E1 of MHV-A59: Structure of the O-linked carbohydrates and construction of full length recombinant cDNA clones. Adv. Exp. Med. Biol. 1984;173:201–213. doi: 10.1007/978-1-4615-9373-7_20. [DOI] [PubMed] [Google Scholar]
  29. Niemann H., Klenk H.-D. Coronavirus glycoprotein E1, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pedersen N.C., Ward J., Mengeling W.L. Antigenic relationship of the feline infections peritonitis virus to coronaviruses of other species. Arch. Virol. 1978;58:45–53. doi: 10.1007/BF01315534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Queen C., Korn L.J. A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Res. 1984;12:581–599. doi: 10.1093/nar/12.1part2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rottier P.J., Welling G.W., Welling-Webster S., Niesters H.G.M., Lenstra J.A., van der Zeijst B.A.M. Predicted membrane topology of the coronavirus protein E1. Biochemistry. 1986;25:1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
  33. Roychoudhury R., Wu R. Terminal transferase-catalyzed addition of nucleotides to the 3′ termini of DNA. In: Grossman L., Moldave K., editors. Vol. 65. Academic Press; New York: 1980. pp. 43–62. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  34. Skinner M.A., Siddell S.G. Coronavirus JHM: Nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Res. 1983;11:5045–5054. doi: 10.1093/nar/11.15.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Smith H.O., Birnstiel M.L. A simple method for DNA restriction site mapping. Nucleic Acids Res. 1976;3:2387–2398. doi: 10.1093/nar/3.9.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stern D.F., Kennedy S.I.T. Coronavirus multiplication strategy. II. Mapping the avian infectious bronchitis virus intracellular RNA species to the genome. J. Virol. 1980;36:440–449. doi: 10.1128/jvi.36.2.440-449.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stohlman S.A., Lai M.M.C. Phosphoproteins of murine hepatitis virus. J. Virol. 1979;32:672–675. doi: 10.1128/jvi.32.2.672-675.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES