Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;244(2):483–494. doi: 10.1006/viro.1998.9121

Roles in Cell-to-Cell Fusion of Two Conserved Hydrophobic Regions in the Murine Coronavirus Spike Protein

Zongli Luo 1, Susan R Weiss 1,1
PMCID: PMC7130564  PMID: 9601516

Abstract

The spike (S) protein of coronavirus, mouse hepatitis virus (MHV), mediates attachment and fusion during viral entry and cell-to-cell fusion later in infection. By analogy with other viral proteins that induce cell fusion the MHV S protein would be expected to have a hydrophobic stretch of amino acids that serves as a fusion peptide. Sequence analysis suggests that the S protein falls within the group of fusion proteins having internal rather than N-terminal fusion peptides. Based on the features of known viral fusion peptides, we identified two regions (PEP1 and PEP2) of MHV-A59 S2 as possible fusion peptides. Site-directed mutagenesis and anin vitrocell-to-cell fusion assay were used to evaluate the roles of PEP1 and PEP2, as well as a third previously identified putative fusion domain (PEP3) in membrane fusion. Substitution of bulky hydrophobic residues with charged residues within PEP1 affects the fusion activity of the S protein without affecting processing and surface expression. Similar substitutions within PEP2 result in a fusion-negative phenotype; however, these mutant S proteins also exhibit defects in protein processing and surface expression which likely explain the loss of the ability to induce fusion. Thus PEP1 remains a candidate fusion peptide, while PEP2 may play a significant role in the overall structure or oligomerization of the S protein. PEP3 is an unlikely putative fusion peptide since it is not conserved among coronaviruses and nonconservative amino acid substitutions in PEP3 have minimal effects on cell-to-cell fusion.

Footnotes

S. G. Siddell

References

REFERENCES

  • 1.Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. Current Protocols in Molecular Biology. Greene and Wiley–Interscience; New York: 1989. [Google Scholar]
  • 2.Binns M.M., Boursnell M.E., Tomley F.M., Brown D.K. Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. J. Gen. Virol. 1986;67:2825–2831. doi: 10.1099/0022-1317-67-12-2825. [DOI] [PubMed] [Google Scholar]
  • 3.Boireau P., Cruciere C., Laporte J. Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. J. Gen. Virol. 1990;71:487–492. doi: 10.1099/0022-1317-71-2-487. [DOI] [PubMed] [Google Scholar]
  • 4.Bos E.C.W., Heunen L., Luytjes W., Spaan W.J.M. Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology. 1995;214:453–463. doi: 10.1006/viro.1995.0056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Britton P. Coronavirus motif. Nature. 1991;353:394. doi: 10.1038/353394a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Buckland R., Malvoisin E., Beauverger P., Wild F. A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. J. Gen. Virol. 1992;73:1703–1707. doi: 10.1099/0022-1317-73-7-1703. [DOI] [PubMed] [Google Scholar]
  • 7.Cavanagh D. Coronavirus IBV: Structural characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  • 8.Cavanagh D. The Coronaviridae. Plenum; New York: 1995. The coronavirus surface glycoprotein. p. 73–113. [Google Scholar]
  • 9.Cavanagh D., Davis P.J., Darbyshire J.H., Peters R.W. Coronavirus IBV: Virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or hemagglutination-inhibiting antibody, or induce chicken tracheal protection. J. Gen. Virol. 1986;67:1435–1442. doi: 10.1099/0022-1317-67-7-1435. [DOI] [PubMed] [Google Scholar]
  • 10.Chamberlain J.P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal. Biochem. 1979;98:132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  • 11.Chambers P., Pringle C.R., Easton A.J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J. Gen. Virol. 1990;71:3075–3080. doi: 10.1099/0022-1317-71-12-3075. [DOI] [PubMed] [Google Scholar]
  • 12.Chen C.M., Pocock D.H., Britton P. Genomic organization of a virulent Taiwanese strain of transmissible gastroenteritis virus. Adv. Exp. Med. Biol. 1993;342:23–28. doi: 10.1007/978-1-4615-2996-5_4. [DOI] [PubMed] [Google Scholar]
  • 13.Cohen C., Parry D.A. Alpha helical coiled coils—A widespread motif in proteins. Trends Biochem. Sci. 1986;11:245–248. [Google Scholar]
  • 14.Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.de Groot R.J., Luytjes W., Horzinek M.C., van der Zeijst B.A., Spaan W.J., Lenstra J.A. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.de Groot R.J., Maduro J., Lenstra J.A., Horzinek M.C., van der Zeijst B.A., Spaan W.J. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68:2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
  • 17.de Groot R.J., Van Leen R.W., Dalderup M.J., Vennema H., Horzinek M.C., Spaan W.J. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology. 1989;171:493–502. doi: 10.1016/0042-6822(89)90619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.DeGrado W.F. Peptide engineering: Catalytic molten globules. Nature. 1993;365:488–489. doi: 10.1038/365488a0. [DOI] [PubMed] [Google Scholar]
  • 19.Delahunty M.D., Rhee I., Freed E.O., Bonifacino J.S. Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: Identification of critical glycine residues. Virology. 1996;218:94–102. doi: 10.1006/viro.1996.0169. [DOI] [PubMed] [Google Scholar]
  • 20.Dempsey C.E. The actions of melittin on membranes. Biochim. Biophys. Acta. 1990;1031:143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  • 21.Doms R.W., Lamb R.A., Rose J.K., Helenius A. Folding and assembly of viral membrane proteins. Virology. 1993;193:545–562. doi: 10.1006/viro.1993.1164. [DOI] [PubMed] [Google Scholar]
  • 22.Dubay J.W., Roberts S.J., Brody B., Hunter E. Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 1992;66:4748–4756. doi: 10.1128/jvi.66.8.4748-4756.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Frana M.F., Behnke J.N., Sturman L.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Host-dependent differences in proteolytic cleavage and cell fusion. J. Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Fuerst T.R., Niles E.G., Studier F.W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA. 1986;83:8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Gallagher T.M. Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. J. Virol. 1996;70:4683–4690. doi: 10.1128/jvi.70.7.4683-4690.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Harter C., James P., Bachi T., Semenza G., Brunner J. Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the “fusion peptide”. J. Biol. Chem. 1989;264:6459–6464. [PubMed] [Google Scholar]
  • 27.Higgins D.G., Bleasby A.J., Fuchs R. CLUSTAL V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 1992;8:189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  • 28.Horth M., Lambrecht B., Khim M.C., Bex F., Thiriart C., Ruysschaert J.M., Burny A., Brasseur R. Theoretical and functional analysis of the SIV fusion peptide. EMBO J. 1991;10:2747–2755. doi: 10.1002/j.1460-2075.1991.tb07823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  • 30.Kubo H., Yamada Y.K., Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 1994;68:5403–5410. doi: 10.1128/jvi.68.9.5403-5410.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Luneberg J., Martin I., Nussler F., Ruysschaert J.M., Herrmann A. Structure and topology of the influenza virus fusion peptide in lipid bilayers. J. Biol. Chem. 1995;270:27606–27614. doi: 10.1074/jbc.270.46.27606. [DOI] [PubMed] [Google Scholar]
  • 32.Luytjes W., Gerritsma H., Bos E., Spaan W. Characterization of two temperature-sensitive mutants of coronavirus mouse hepatitis virus strain A59 with maturation defects in the spike protein. J. Virol. 1997;71:949–955. doi: 10.1128/jvi.71.2.949-955.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van d., Zeijst B.A., Horzinek M.C., Spaan W.J. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Marquardt T., Helenius A. Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. J. Cell Biol. 1992;117:505–513. doi: 10.1083/jcb.117.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Muga A., Neugebauer W., Hirama T., Surewicz W.K. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry. 1994;33:4444–4448. doi: 10.1021/bi00181a002. [DOI] [PubMed] [Google Scholar]
  • 36.Nieva J.L., Nir S., Muga A., Goni F.M., Wilschut J. Interaction of the HIV-1 fusion peptide with phospholipid vesicles: Different structural requirements for fusion and leakage. Biochemistry. 1994;33:3201–3209. doi: 10.1021/bi00177a009. [DOI] [PubMed] [Google Scholar]
  • 37.Nussbaum O., Broder C.C., Berger E.A. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J. Virol. 1994;68:5411–5422. doi: 10.1128/jvi.68.9.5411-5422.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1989. [Google Scholar]
  • 39.Segrest J.P., De L.H., Dohlman J.G., Brouillette C.G., Anantharamaiah G.M. Amphipathic helix motif: Classes and properties. Proteins. 1990;8:103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  • 40.Segrest J.P., Jones M.K., De L.H., Brouillette C.G., Venkatachalapathi Y.V., Anantharamaiah G.M. The amphipathic helix in the exchangeable apolipoproteins: A review of secondary structure and function. J. Lipid Res. 1992;33:141–166. [PubMed] [Google Scholar]
  • 41.Sergel-Germano T., McQuain C., Morrison T. Muta-tions in the fusion peptide and heptad repeat regions of the Newcastle disease virus fusion protein block fusion. J. Virol. 1994;68:7654–7658. doi: 10.1128/jvi.68.11.7654-7658.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Siddell S., Wege H., Ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  • 43.Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  • 44.Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Taguchi F. The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. J. Virol. 1995;69:7260–7263. doi: 10.1128/jvi.69.11.7260-7263.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Vennema H., Heijnen L., Zijderveld A., Horzinek M.C., Spaan W.J. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.White J.M. Viral and cellular membrane fusion proteins. Annu. Rev. Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
  • 48.White J.M. Membrane fusion. Science. 1992;258:917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  • 49.Yu Y.G., King D.S., Shin Y.K. Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes. Science. 1994;266:274–276. doi: 10.1126/science.7939662. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES