Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;269(1):172–182. doi: 10.1006/viro.2000.0218

Downstream Ribosomal Entry for Translation of Coronavirus TGEV Gene 3b

Jennifer Black O'Connor 1, David A Brian 1,1
PMCID: PMC7130589  PMID: 10725209

Abstract

Gene 3b (ORF 3b) in porcine transmissible gastroenteritis coronavirus (TGEV) encodes a putative nonstructural polypeptide of 27.7 kDa with unknown function that during translation in vitro is capable of becoming a glycosylated integral membrane protein of 31 kDa. In the virulent Miller strain of TGEV, ORF 3b is 5′-terminal on mRNA 3–1 and is presumably translated following 5′ cap-dependent ribosomal entry. For three other strains of TGEV, the virulent British FS772/70 and Taiwanese TFI and avirulent Purdue-116, mRNA species 3–1 is not made and ORF 3b is present as a non-overlapping second ORF on mRNA 3. ORF 3b begins at base 432 on mRNA 3 in Purdue strain. In vitro expression of ORF 3b from Purdue mRNA 3-like transcripts did not fully conform to a predicted leaky scanning pattern, suggesting ribosomes might also be entering internally. With mRNA 3-like transcripts modified to carry large ORFs upstream of ORF 3a, it was demonstrated that ribosomes can reach ORF 3b by entering at a distant downstream site in a manner resembling ribosomal shunting. Deletion analysis failed to identify a postulated internal ribosomal entry structure (IRES) within ORF 3a. The results indicate that an internal entry mechanism, possibly in conjunction with leaky scanning, is used for the expression of ORF 3b from TGEV mRNA 3. One possible consequence of this feature is that ORF 3b might also be expressed from mRNAs 1 and 2.

Keywords: porcine transmissible gastroenteritis coronavirus, gene 3b, ribosomal scanning, ribosomal shunting

References

REFERENCES

  • 1.Boursnell M.E.G., Binns M.M., Brown T.D.K. Sequencing of coronavirus IBV genomic RNA: Three open reading frames in the 5′ “unique” region of mRNA D. J. Gen. Virol. 1985;66:2253–2258. doi: 10.1099/0022-1317-66-10-2253. [DOI] [PubMed] [Google Scholar]
  • 2.Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Brierly I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Britton P., Lopez Otin C., Martin Alonso J.M., Parra F. Sequence of the coding regions from the 3.0 kb and 3.9 kb mRNA subgenomic species from a virulent isolate of transmissible gastroenteritis virus. Arch. Virol. 1989;105:165–178. doi: 10.1007/BF01311354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Budzilowicz C.J., Weiss S.R. In vitro synthesis of two polypeptides from a nonstructural gene of coronavirus mouse hepatitis virus strain A59. Virology. 1987;157:509–515. doi: 10.1016/0042-6822(87)90293-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chen C.-M., Cavanagh D., Britton P. Cloning and sequencing of an 8.4 kb region from the 3′ end of a Taiwanese virulent field isolated of the coronavirus transmissible gastroenteritis virus (TGEV) Virus Res. 1995;38:83–89. doi: 10.1016/0168-1702(95)00046-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Curran J., Kolakovsky D. Scanning independent ribosomal initiation of the Sendai virus X protein. EMBO J. 1988;7:2869–2874. doi: 10.1002/j.1460-2075.1988.tb03143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Curran J., Kolakovsky D. Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. EMBO J. 1989;8:521–526. doi: 10.1002/j.1460-2075.1989.tb03406.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Eleouet J.F., Rasschaert D., Lambert P., Levy L., Vende P., Laude H. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology. 1995;206:817–822. doi: 10.1006/viro.1995.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Enjuanes L., Van der Zeijst B.A.M. Molecular basis of transmissible gastroenteritis coronavirus (TGEV) epidemiology. In: Siddell S.G., editor. The Coronaviridae. Plenum; New York: 1995. pp. 337–376. [Google Scholar]
  • 11.Fischer F., Peng D., Hingley S.T., Weiss S.R., Masters P.S. The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 1997;71:996–1003. doi: 10.1128/jvi.71.2.996-1003.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Futterer J., Kiss-Laszio Z., Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell. 1993;73:789–802. doi: 10.1016/0092-8674(93)90257-q. [DOI] [PubMed] [Google Scholar]
  • 13.Futterer J., Potrykus I., Bao Y., Li L., Burns T.M., Hull R., Hohn T. Position-dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. J. Virol. 1996;70:2999–3010. doi: 10.1128/jvi.70.5.2999-3010.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hemmings-Mieszczak M., Hohn T. A stable hairpin preceded by a short open reading frame promotes nonlinear ribosome migration on a synthetic mRNA leader. RNA. 1999;5:1149–1157. doi: 10.1017/s1355838299990325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hofmann M.A., Chang R.-Y., Brian D.A. Leader-mRNA junction sequences are unique for each subgenomic mRNA species in the bovine coronavirus and remain so throughout persistent infection. Virology. 1993;196:163–171. doi: 10.1006/viro.1993.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Horton R.M., Zeling C., Steffan N.H., Bease L.R. Gene splicing by overlap extension: Tailor-made genes using polymerase chain reaction. BioTechniques. 1990;8:528–535. [PubMed] [Google Scholar]
  • 17.Iizuka N., Najita L., Franzusoff A., Sarnow P. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell. Biol. 1994;14:7322–7330. doi: 10.1128/mcb.14.11.7322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Jackson R.J. A comparative view of initiation site selection mechanisms. In: Hershey J.W.B., Mathews M.B., Sonenberg N., editors. Translational Control. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1996. pp. 71–112. [Google Scholar]
  • 19.Jackson R.J., Hunt S.C., Reynold J.E., Kaminski A. Cap-dependent and cap independent translation: Operational distinctions and mechanistic interpretations. In: Sarnow P., editor. Current Topics in Microbiology and Immunology: Cap-independent Translation. Springer-Verlag; New York: 1995. pp. 1–29. [DOI] [PubMed] [Google Scholar]
  • 20.Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kapke P.A., Tung F.Y.T., Brian D.A. Nucleotide sequence between the peplomer and matrix protein genes of the porcine transmissible gastroenteritis coronavirus identifies three large open reading frames. Virus Genes. 1988;2:293–294. doi: 10.1007/BF00125345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Kapke P.A., Tung F.Y.T., Hogue B.G., Brian D.A., Woods R.D., Wesley R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988;165:367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kozak M. The scanning model for translation: An update. J. Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kozak M. An analysis of vertebrate mRNA sequences: Intimations of translational control. J. Cell Biol. 1991;115:887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 1991;266:19867–19870. [PubMed] [Google Scholar]
  • 26.Lai M.M.C., Cavanagh D. The molecular biology of coronaviruses. Adv. Virus Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Latorre P., Kolakofsky D., Curran J. Sendai virus Y proteins are initiated by a ribosomal shunt. Mol. Cell. Biol. 1998;18:5021–5031. doi: 10.1128/mcb.18.9.5021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Le S.-Y., Sonenberg N., Maizel J.V. Distinct structural elements and internal entry of ribosomes in mRNA 3 encode by infectious bronchitis virus. Virology. 1995;198:405–411. doi: 10.1006/viro.1994.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Leibowitz J.L., Perlman S., Weinstock G., DeVries J.R., Budzilowitz C., Weisseman J.M., Weiss S.R. Detection of a murine coronavirus nonstructural protein encoded in a downstream open reading frame. Virology. 1988;164:156–164. doi: 10.1016/0042-6822(88)90631-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Liu D.X., Cavanagh D., Green P., Inglis S.C. A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology. 1991;184:531–544. doi: 10.1016/0042-6822(91)90423-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Liu D.X., Inglis S.C. Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus. J. Virol. 1992;66:6143–6154. doi: 10.1128/jvi.66.10.6143-6154.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Luytjes W. Coronavirus gene expression: Genome organization and protein synthesis. In: Siddell S.G., editor. The Coronaviridae. Plenum; New York: 1995. pp. 33–54. [Google Scholar]
  • 33.Mathews M.B. Interactions between viruses and the cellular machinery for protein synthesis. In: Hershey J.W.B., Mathews M.B., Sonenberg N., editors. Translational Control. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1996. pp. 505–548. [Google Scholar]
  • 34.O'Connor J.B., Brian D.A. The major product of porcine transmissible gastroenteritis coronavirus gene 3b is an integral membrane glycoprotein of 31 kDa. Virology. 1999;256:152–161. doi: 10.1006/viro.1999.9640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Peabody D.S., Subramani S., Berg P. Effect of upstream reading frames on translation efficiency in simian virus 40 recombinants. Mol. Cell. Biol. 1986;6:2704–2711. doi: 10.1128/mcb.6.7.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Rasschaert D., Gelfi J., Laude H. Enteric coronavirus TGEV: Partial sequence of the genomic RNA, its organization and expression. Biochimie (Paris) 1987;69:591–600. doi: 10.1016/0300-9084(87)90178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Reynolds J.E., Kaminski A., Kettinen H.J., Grace K., Clarke B.E., Carroll A.R., Rowlands D.J., Jackson R.J. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 1995;14:6010–6020. doi: 10.1002/j.1460-2075.1995.tb00289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Senanayake S.D., Brian D.A. Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Res. 1997;48:101–105. doi: 10.1016/S0168-1702(96)01423-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Senanayake S.D., Hofmann M.A., Maki J.L., Brian D.A. The nucleocapsid gene of bovine coronavirus is bicistronic. J. Virol. 1992;66:5277–5283. doi: 10.1128/jvi.66.9.5277-5283.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sethna P.B., Hofmann M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 1991;65:320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Sethna P.B., Hung S.-L., Brian D.A. Coronavirus subgenomic minus-strand RNA and the potential for mRNA replicons. Proc. Natl. Acad. Sci. USA. 1989;86:5626–5630. doi: 10.1073/pnas.86.14.5626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second downstream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
  • 43.Thiel V., Siddell S.G. Internal ribosomal entry in the coding region of murine hepatitis virus mRNA 5. J. Gen. Virol. 1994;75:3041–3046. doi: 10.1099/0022-1317-75-11-3041. [DOI] [PubMed] [Google Scholar]
  • 44.Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature. 1973;246:40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  • 45.Tung F.Y.T., Abraham S., Sethna M., Hung S.-L., Sethna P.B., Hogue B.G., Brian D.A. The 9.1 kilodalton hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane associated. Virology. 1992;186:676–683. doi: 10.1016/0042-6822(92)90034-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Vaughn E.M., Halbur P.G., Paul P.S. Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3–1 genes. J. Virol. 1995;69:3176–3184. doi: 10.1128/jvi.69.5.3176-3184.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Wesley R.D., Cheung A.K., Michael D.D., Woods R.D. Nucleotide sequence of coronavirus TGEV genomic RNA: Evidence for 3 mRNA species between the peplomer and matrix protein genes. Virus Res. 1989;13:87–100. doi: 10.1016/0168-1702(89)90008-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Wesley R.D., Woods R.D., Cheung A.K. Genetic basis for the pathogenesis of transmissible gastroenteritis virus. J. Virol. 1990;64:4761–4766. doi: 10.1128/jvi.64.10.4761-4766.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Wesley R.D., Woods R.D., Cheung A.K. Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J. Virol. 1991;65:3369–3373. doi: 10.1128/jvi.65.6.3369-3373.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Williams M.A., Lamb R.A. Effect of mutations and deletions in a bicistronic mRNA on the synthesis of influenza B virus NB and NA glycoproteins. J. Virol. 1989;63:28–35. doi: 10.1128/jvi.63.1.28-35.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Yueh A., Schneider R.J. Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev. 1996;10:1557–1567. doi: 10.1101/gad.10.12.1557. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES