Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 15;42(2):173–181. doi: 10.1016/0047-6374(88)90072-3

N-linked protein glycosylation in the rat parotid gland during aging

Eleni E Kousvelari 1,, Dipak K Banerjee 1,∗∗, Lalita Murty 1, Bruce J Baum 1
PMCID: PMC7130591  PMID: 2834612

Abstract

N-Linked protein glycosylation was examined in vitro in dispersed rat parotid acinar cells from young adult (3–6 months) and aged (22–24 months) rats. A small decrease in general protein production was observed with cells from aged animals (∼20% lower incorporation of [14C]leucine into 10% CCI3 COOH insoluble protein during continuous pulse labeling). Incorporation of [3H]mannose into N-linked glycoproteins by aged cells was further reduced (∼35%). Similarly microsomal membranes from parotid glands of aged animals showed ∼50% reduction in the synthesis of mannosylphosphoryl dolichol, a key intermediate in the dolichol pathway of protein N-glycosylation. Man-P-Dol synthase, the microsomal enzyme responsible for production of this saccharide-lipid, displayed no change in apparent Km for GDP-mannose when preparations from aged animals were utilized, but did show ∼50% reduction in Vmax. Following β-adrenoreceptor activation, cells from both young adult and aged glands showed increased N-linked protein glycosylation almost to the same extent (∼2-fold). The data suggested that in aged rat parotid cells there is a basal reduction of activity in the pathway responsible for asparagine-linked protein glycosylation, but that following exocytotic stimuli this pathway responds in a manner comparable to cells from young adult glands.

Keywords: Asparagine-linked oligosaccharides, Man-P-Dol synthase, Dolichol pathway, Salivary gland, β-Adrenoreceptor

References

  • 1.Olden K., Bernard B.A., Humphries M.J., Yeo T.-K., Yeo K.-T., White S.L., Newton S.A., Bauer H.C., Parent J.B. Function of glycoprotein glycans. Trends Biochem. Sci. 1985;10:78. [Google Scholar]
  • 2.Hanover J.A., Lennarz W.J. Transmembrane assembly of membrane and secretory glycoproteins. Arch. Biochem. Biophys. 1982;211:1. doi: 10.1016/0003-9861(81)90423-9. [DOI] [PubMed] [Google Scholar]
  • 3.Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1986;54:631. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  • 4.Krag S.S., Robbins A.R. A chinese hamster ovary cell mutant deficient in glycosylation of lipid-linked oligosaccharides synthesizes lysosomal enzymes of altered structure and function. J. Biol. Chem. 1982;257:8424. [PubMed] [Google Scholar]
  • 5.Repp R., Tamura T., Boscheck C.B., Wege H., Schwarz R.T., Niemann H. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein EZ of mouse hepatitis virus and the maturation of coronavirus particles. J. Biol. Chem. 1985;260:15873. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Waechter C.J., Schmidt J.W., Catterall W.J. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J. Biol. Chem. 1983;258:5117. [PubMed] [Google Scholar]
  • 7.Rosso G.C., Bendrick C.J., Wolf G. In vivo synthesis of lipid-linked oligosaccharides in the livers of normal and vitamin A-deficient rats. J. Biol. Chem. 1981;256:8341. [PubMed] [Google Scholar]
  • 8.Coniglio J.J., Liu D.S.H., Richardson A. A Comparison of protein synthesis by liver parenchymal cells isolated from Fischer F344 rats of various ages. Mech. Ageing Dev. 1979;11:77. doi: 10.1016/0047-6374(79)90026-5. [DOI] [PubMed] [Google Scholar]
  • 9.Richardson A. In: The relationship between aging and protein synthesis. Florini J.R., editor. CRC Press; Boca Raton, FL: 1981. pp. 79–101. (CRC Handbook of Biochemistry in Aging). [Google Scholar]
  • 10.Bienkowski R.S., Baum B.J. Measurement of intracellular protein degradation. In: Adelman R.C., Roth G.S., editors. CRC Press; Boca Raton, FL: 1983. pp. 55–80. (Altered Proteins and Aging). [Google Scholar]
  • 11.Courtois Y., Hughes R.C. Surface labelling of senescent chick fibroblasts by lactoperoxidase-catalysed iodination. Gerontology. 1976;22:371. doi: 10.1159/000212149. [DOI] [PubMed] [Google Scholar]
  • 12.Milo G.E., Hart R.W. Age-related alterations in plasma membrane glycoprotein content and scheduled or unscheduled DNA synthesis. Arch. Biochem. Biophys. 1976;176:324. doi: 10.1016/0003-9861(76)90171-5. [DOI] [PubMed] [Google Scholar]
  • 13.Chiou S.H., Chylack L.T., Tung W.H., Bunn H.F. Effect of aging. Vol. 256. 1980. Non-enzymatic glycosylation of bovine lens crystallins; p. 5176. (J. Biol. Chem.). [PubMed] [Google Scholar]
  • 14.Ramaekers F.C.S., Hukkelhoven M.W.A.C., Groeneveld A., Bloemendal A. Changing protein patterns during lens aging in vitro. Biochim. Biophys. Acta. 1984;799:221. doi: 10.1016/0304-4165(84)90264-2. [DOI] [PubMed] [Google Scholar]
  • 15.Blondal J.A., Dick J.E., Wright J.A. Membrane glycoprotein changes during the senescence of normal human diploid fibroblasts in culture. Mech. Ageing Dev. 1985;30:273. doi: 10.1016/0047-6374(85)90117-4. [DOI] [PubMed] [Google Scholar]
  • 16.Kousvelari E.E., Grant S.R., Baum B.J. Vol. 80. 1983. β-Adrenergic receptor regulation of N-linked protein glycosylation in rat parotid acinar cells; p. 7146. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kousvelari E.E., Grant S.R., Banerjee D.K., Newby M.J., Baum B.J. Cyclic AMP mediates β-adrenergic-induced increases in N-linked protein glycosylation in rat parotid acinar cells. Biochem. J. 1984;22:18. doi: 10.1042/bj2220017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Banerjee D.K., Kousvelari E.E., Baum B.J. β-Adrenergic activation of glycosyltransferases in the dolichylmonophosphate-linked pathway of protein N-glycosylation. Biochem. Biophys. Res. Commun. 1985;126:123. doi: 10.1016/0006-291x(85)90580-7. [DOI] [PubMed] [Google Scholar]
  • 19.Grant S.R., Kousvelari E.E., Banerjee D.K., Baum B.J. β-Adrenergic stimulation alters oligosaccharide pyrophosphoryl dolichol metabolism in rat parotid acinar cells. Biochem. J. 1985;231:431. doi: 10.1042/bj2310431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ito H., Baum B.J., Roth G.S. β-Adrenergic regulation of rat parotid gland exocrine protein secretion during aging. Mech. Ageing Dev. 1981;15:177. doi: 10.1016/0047-6374(81)90073-7. [DOI] [PubMed] [Google Scholar]
  • 21.Ito H., Baum B.J., Uchida T., Hoopes M.T., Bodner L., Roth G.S. Modulation of rat parotid cell α-adrenergic responsiveness at a step subsequent to receptor activation. J. Biol. Chem. 1982;257:9532. [PubMed] [Google Scholar]
  • 22.Bodner L., Hoopes M.T., Gee M., Ito H., Roth G.S., Baum B.J. Multiple transduction mechanisms are likely involved in calcium-mediated exocrine secretory events in rat parotid cells. J. Biol. Chem. 1983;258:2774. [PubMed] [Google Scholar]
  • 23.Gee M.V., Ishikawa Y., Baum B.J., Roth G.S. The role of calcium. Vol. 41. 1986. Impaired adrenergic stimulation of rat parotid cell glucose oxidation during aging; p. 331. (J. Gerontol.). [DOI] [PubMed] [Google Scholar]
  • 24.Richards G.M. Modifications of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Anal. Biochem. 1974;57:369. doi: 10.1016/0003-2697(74)90091-8. [DOI] [PubMed] [Google Scholar]
  • 25.Waechter C.J., Kennedy K.L., Harford J.B. Lipid intermediates involved in the assembly of membrane-associated glycoproteins in calf brain white matter. Arch. Biochem. Biophys. 1976;174:726. doi: 10.1016/0003-9861(76)90403-3. [DOI] [PubMed] [Google Scholar]
  • 26.Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  • 27.Kim S.K., Weinhold P.A., Han S.S., Wagner D.J. Age-related decline in protein synthesis in the rat parotid gland. Exp. Gerontol. 1980;15:77. doi: 10.1016/0531-5565(80)90078-9. [DOI] [PubMed] [Google Scholar]
  • 28.Kim S.K., Weinhold P.A., Calkins D.W., Hartog V.W. Comparative studies of the age-related changes in protein synthesis in the rat pancreas and parotid gland. Exp. Gerontol. 1981;16:91. doi: 10.1016/0531-5565(81)90012-7. [DOI] [PubMed] [Google Scholar]
  • 29.Turco S.J., Stetson B., Robbins P.W. Vol. 74. 1977. Comparative rates of transfer of lipid-linked oligosaccharides to endogenous glycoprotein acceptors in vivo; p. 4411. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Spiro M.J., Spiro R.G., Bhoyroo V.D. Studies on a thyroid enzyme involved in oligosaccharide transfer and the role of glucose in this reaction. Vol. 254. 1979. Glycosylation of proteins by oligosaccharide-lipids; p. 7668. (J. Biol. Chem.). [PubMed] [Google Scholar]
  • 31.Adelman R.C., Roth G.S. CRC Press; Boca Raton, FL: 1983. Altered Proteins and Aging. [Google Scholar]

Articles from Mechanisms of Ageing and Development are provided here courtesy of Elsevier

RESOURCES