Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 23;156(2):342–354. doi: 10.1016/0042-6822(87)90414-4

Analysis of intracellular small RNAs of mouse hepatitis virus: evidence for discontinuous transcription

Ralph S Baric 1,1, Chien-Kou Shieh 1, Stephen A Stohlman 1, Michael MC Lai 1,2
PMCID: PMC7130593  PMID: 3027983

Abstract

We have previously shown the presence of multiple small leader-containing RNA species in mouse hepatitis virus (MHV)-infected cells. In this paper, we have analyzed the origin, structure, and mechanism of synthesis of these small RNAs. Using cDNA probes specific for leader RNA and genes A, D, and F, we demonstrate that subsets of these small RNAs were derived from the various viral genes. These subsets have discrete and reproducible sizes, varying with the gene from which they are derived. The size of each subset correlates with regions of secondary structure, whose free energy ranges from −1.6 to −77.1 kcal/mol, in each of the mRNAs examined. In addition, identical subsets were detected on the replicative intermediate (RI) RNA, suggesting that they represent functional transcriptional intermediates. The biological significance of these small RNAs is further supported by the detection of leader-containing RNAs of 47, 50, and 57 nucleotides in length, which correspond to the crossover sites in two MHV recombinant viruses. These data, coupled with the high frequency of RNA recombination during MHV infection, suggest that the viral polymerase may pause in or around regions of secondary structure, thereby generating pools of free leader-containing RNA intermediates which can reassociate with the template, acting as primers for the synthesis of full-length or recombinant RNAs. These data suggest that MHV transcription uses a discontinuous and nonprocessive mechanism in which RNA polymerase allows the partial RNA products to be dissociated from the template temporarily during the process of transcription.

References

  1. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature (London) 1984;308:751–762. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auron P.E., Weber L.D., Rich A. Comparison of transfer ribonucleic acid structures using cobra venom and S1 endonucleases. Biochemistry. 1982;21:4700–4706. doi: 10.1021/bi00262a028. [DOI] [PubMed] [Google Scholar]
  3. Baric R.S., Stohlman S.A., Lai M.M.C. Characterization of replicative intermediate RNA of mouse hepatitis virus: Presence of leader RNA sequences on nascent chains. J. Virol. 1983;48:633–640. doi: 10.1128/jvi.48.3.633-640.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baric R.S., Stohlman S.A., Razavi M.K., Lai M.M.C. Characterization of leader-related small RNAs in coronavirus-infected cells: Further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–33. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brayton P.R., Ganges R.G., Stohlman S.A. Host cell nuclear function and murine hepatitis virus replication. J. Gen. Virol. 1981;56:457–460. doi: 10.1099/0022-1317-56-2-457. [DOI] [PubMed] [Google Scholar]
  6. Brayton P.R., Lai M.M.C., Patton C.D., Stohlman S.A. Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J. Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brayton P.R., Stohlman S.A., Lai M.M.C. Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology. 1984;133:197–201. doi: 10.1016/0042-6822(84)90439-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Efstratiadis A., Maniatis T., Kafatos F.C., Jeffrey A., Vournakis J.N. Full length and discrete partial reverse transcripts of globin and chorion mRNAs. Cell. 1975;4:367–378. doi: 10.1016/0092-8674(75)90157-9. [DOI] [PubMed] [Google Scholar]
  9. Fields B.N. Genetics of reovirus. Curr. Top. Microb. Immunol. 1981;91:1–24. doi: 10.1007/978-3-642-68058-8_1. [DOI] [PubMed] [Google Scholar]
  10. Gehrke J., Auron P.E., Quigley G.J., Rich A., Sonenberg N. 5′-Conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry. 1983;22:5157–5164. doi: 10.1021/bi00291a015. [DOI] [PubMed] [Google Scholar]
  11. Haseltine W.A., Kleid D.G., Panet A., Rothenberg E., Baltimore D. Ordered transcription of RNA tumor virus genomes. J. Mol. Biol. 1976;106:109–131. doi: 10.1016/0022-2836(76)90303-x. [DOI] [PubMed] [Google Scholar]
  12. Huang C.C., Hay N., Bishop J.M. The role of RNA molecules in transduction of the proto-oncogene c-fps. Cell. 1986;44:935–940. doi: 10.1016/0092-8674(86)90016-4. [DOI] [PubMed] [Google Scholar]
  13. Huang C.C., Hearst J.E. Fine mapping of secondary structures of fd phage DNA in the region of the replication origin. Nucleic Acids Res. 1981;9:5587–5599. doi: 10.1093/nar/9.21.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobs L., Spaan W.J.M., Horzinek M.C., Van der Zeijst B.A.M. Synthesis of subgenomic mRNAs of mouse hepatitis virus is initiated independently: Evidence from U.V. transcriptional mapping. J. Virol. 1981;34:401–406. doi: 10.1128/jvi.39.2.401-406.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keck J., Stohlman S.A., Soe L., Makino S., Lai M.M.C. Multiple recombination sites at the 5'-end of murine coronavirus RNA. Virology. 1987;156:331–341. doi: 10.1016/0042-6822(87)90413-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kramer F.R., Mills D.R. Secondary structure formation during RNA synthesis. Nucleic Acids Res. 1981;9:5109–5124. doi: 10.1093/nar/9.19.5109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus—a cytoplasmic RNA virus; pp. 3626–3630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai M.M.C., Baric R.S., Makino S., Keck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. Recombination between nonsegmented RNA genomes of murine coronaviruses. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lai M.M.C., Patton C.D., Stohlman S.A. Replication of mouse hepatitis virus: Negative-stranded RNA and replicative form RNA are of genomic length. J. Virol. 1982;44:487–492. doi: 10.1128/jvi.44.2.487-492.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lai M.M.C., Stohlman S.A. RNA of mouse hepatitis virus. J. Virol. 1978;26:236–242. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leibowitz J.L., Wilhelmsen K.C., Bond C.W. The virus specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:39–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maizels N.M. Vol. 70. 1973. The nucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promotor mutant of Escherichia coli; pp. 3585–3589. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Makino S., Keck J.G., Stohlman S.A., Lai M.M.C. High frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Makino S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus mRNAs can be freely reassorted: Evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning-A Laboratory Manual). [Google Scholar]
  27. Mills D.R., Dabkin C., Kramer F.R. Template-determined, variable rate of RNA chain elongation. Cell. 1978;15:541–550. doi: 10.1016/0092-8674(78)90022-3. [DOI] [PubMed] [Google Scholar]
  28. Minkley E.G., Pribnow D. Transcription of the early region of bacteriophage T7: Selective initiation with dinucleotides. J. Mol. Biol. 1973;77:255–277. doi: 10.1016/0022-2836(73)90335-5. [DOI] [PubMed] [Google Scholar]
  29. Niyogi S.K., Stevens A. Studies of the ribonucleic acid polymerase from Escherichia coli. IV. Effect of oligonucleotides on the ribonucleic acid polymerase reaction with synthetic polyribonucleotides as templates. J. Biol. Chem. 1965;240:2593–2598. [PubMed] [Google Scholar]
  30. Rosenberg M., Court D., Shimatake H., Brady C., Wulff D.L. The relationship between function and DNA sequence in an intercistronic regulatory region in phage lambda. Nature (London) 1978;272:414–423. doi: 10.1038/272414a0. [DOI] [PubMed] [Google Scholar]
  31. Salser W. Vol. 42. 1977. Globin mRNA sequences: analysis of base pairing and evolutionary implications; pp. 985–1002. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  32. Sawicki S.G., Sawicki D.L. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. J. Virol. 1986;57:328–334. doi: 10.1128/jvi.57.1.328-334.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sherman L.A., Gefter M.L. Studies on the mechanism of enzymatic DNA elongation by Escherichia coli DNA polymerase II. J. Mol. Biol. 1976;103:61–76. doi: 10.1016/0022-2836(76)90052-8. [DOI] [PubMed] [Google Scholar]
  34. Shier C.-K., Soe L., Makino S., Chang M.F., Stohlman S.A., Lai M.M.C. The 5′-end sequence of murine coronavirus genome: Implications for multiple fusion sites in leader-primed transcription. Virology. 1987;156:321–330. doi: 10.1016/0042-6822(87)90412-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM. mRNA5 has a sequence arrangement which potentially allows translation of a second down-stream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
  36. Skinner M.A., Siddell S.G. Coding sequence of coronavirus MHV-JHM mRNA 4. J. Gen. Virol. 1985;66:593–596. doi: 10.1099/0022-1317-66-3-593. [DOI] [PubMed] [Google Scholar]
  37. Spaan W., Delius H., Skinner M., Armstrong J., Rotter P., Smeekens S., Van der Zeijst B.A.M., Siddell S.G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stellwag E.J., Dahlberg A.E. Electrophoretic transfer of DNA, RNA and protein onto diazobenzyloxymethyl (DBM) paper. Nucleic Acids Res. 1980;8:299–317. doi: 10.1093/nar/8.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sturman L.S. Characterization of a coronavirus. I. Structural proteins: Effects of preparative conditions on the migration of protein in polyacrylamide gels. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 1973;246:40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  42. Weissman C. The making of a phage. FEBS Lett. 1974;40:S10–S18. doi: 10.1016/0014-5793(74)80684-8. [DOI] [PubMed] [Google Scholar]
  43. Wilhelmsen K.C., Leibowitz J.L., Bond C.W., Robb J.A. The replication of murine coronaviruses in enucleated cells. Virology. 1981;110:225–230. doi: 10.1016/0042-6822(81)90027-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zucker M., Stiegler P. Optimal computer folding of large RNA sequence using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES