Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 11;189(1):88–102. doi: 10.1016/0042-6822(92)90684-H

Evidence for variable rates of recombination in the MHV genome

Kaisong Fu , Ralph S Baric †,1
PMCID: PMC7130604  PMID: 1318616

Abstract

Mouse hepatitis virus has been shown to undergo RNA recombination at high frequency during mixed infection. Temperature-sensitive mutants were isolated using 5-fluorouracil and 5-azacytidine as mutagen. Six RNA+ mutants that reside within a single complementation group mapping within the S glycoprotein gene of MHV-A59 were isolated which did not cause syncytium at the restrictive temperature. Using standard genetic techniques, a recombination map was established that indicated that these mutants mapped into two distinct domains designated F1 and F2. These genetic domains may correspond to mutations mapping within the S1 and S2 glycoproteins, respectively, and suggest that both the S1 and S2 domains are important in eliciting the fusogenic activity of the S glycoprotein gene. In addition, assuming that most distal is alleles map roughly 4.0 kb apart, a recombination frequency of 1 % per 575–676 by was predicted through the S glycoprotein gene. Interestingly, this represents a threefold increase in the recombination frequency as compared to rates predicted through the polymerase region. The increase in the recombination rate was probably not due to recombination events resulting in large deletions or insertions (>50 bp), but rather was probably due to a combination of homologous and nonhomologous recombination. A variety of explanations could account for the increased rates of recombination in the S gene.

References

  1. Allison R., Thompson C., Ahlouist P. Vol. 87. 1990. Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection; pp. 1820–1824. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker S.C., Shieh C.-K., Soe L.H., Chang M.F., Vannier D.M., Lai M.M.C. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J. Virol. 1989;63:3693–3699. doi: 10.1128/jvi.63.9.3693-3699.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker S.C., Lai M.M.C. An in vitro system for the leader-primed transcription of coronavirus mRNAs. EMBO J. 1990;9:4173–4179. doi: 10.1002/j.1460-2075.1990.tb07641.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banner L.R., Keck J.G., Lai M.M.C. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology. 1990;175:584. doi: 10.1016/0042-6822(90)90439-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Banner L.R., Lai M.M.C. Random nature of Coronavirus RNA recombination the absence of selection pressure. Virology. 1991;185:441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baric R.S., Stohlman S.A., Lai M.M.C. Characterization of replicative intermediate RNA of mouse hepatitis virus: Presence of leader RNA sequences on nascent chains. J. Virol. 1983;48:633–640. doi: 10.1128/jvi.48.3.633-640.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baric R.S., Stohlman S.A., Razavi M.K., Lai M.M.C. Characterization of leader-related small RNAs in coronavirus-infected cells: Further evidence for leader-primed mechanism of transcription. Virus Res. 1985;3:19–33. doi: 10.1016/0168-1702(85)90038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baric R.S., Shieh C.-K., Stohlman S.A., Lai M.M.C. Analysis of intercellular small RNAs of mouse hepatitis virus: Evidence for discontinuous transcription. Virology. 1987;156:342–354. doi: 10.1016/0042-6822(87)90414-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Baric R.S., Nelson G.W., Fleming J.O., Deans R.J., Keck J.G., Casteel N., Stohlman S.A. Interactions between coronavirus nucleocapsid protein and viral RNAs: Implications for viral transcription. J. Virol. 1988;62:4280–4287. doi: 10.1128/jvi.62.11.4280-4287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baric R.S., Fu K.S., Schaad M.C., Stohlman S.A. Establishing a genetic recombination map for MHV-A59 complementation groups. Virology. 1990;177:646–656. doi: 10.1016/0042-6822(90)90530-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Boireau P., Cruciere C., Laporte J. Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. J. Gen. Virol. 1990;71:487–492. doi: 10.1099/0022-1317-71-2-487. [DOI] [PubMed] [Google Scholar]
  12. Brayton P.R., Lai M.M.C., Patton C.D., Stohlman S.A. Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J. Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brayton P.R., Stohlman S.A., Lai M.M.C. Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology. 1984;133:197–201. doi: 10.1016/0042-6822(84)90439-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bredenbeek P.J., Pachuk C.J., Noten Ans F.H., Charite J., Luytjes W., Weiss S.R., Spaan W.J.M. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 1990;18:1825–1832. doi: 10.1093/nar/18.7.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bujarsky J.J., Kaesberg P. Genetic recombination between RNA components of a multipartite plant virus. Nature. 1986;321:528–531. doi: 10.1038/321528a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cavanagh D., Davis P., Cook J., Li D. Molecular basis of the variation exhibited by avian infectious bronchitis coronavirus (I BV) Adv. Exp. Med. Biol. 1991;276:369–372. doi: 10.1007/978-1-4684-5823-7_50. [DOI] [PubMed] [Google Scholar]
  17. Chase M., Doermann A.H. High negative interference over short segments of the genetic structure of bacteriophage T4. Genetics. 1958;43:332–353. doi: 10.1093/genetics/43.3.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Compton S.R., Rogers D.B., Holmes K.V., Fertsch D., Remenick J., McGowan J.J. In vitro replication of mouse hepatitis virus strain A59. J. Virol. 1987;61:1814–1820. doi: 10.1128/jvi.61.6.1814-1820.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cooper P.D. A genetic map of poliovirus temperature-sensitive mutants. Virology. 1968;35:584–596. doi: 10.1016/0042-6822(68)90287-0. [DOI] [PubMed] [Google Scholar]
  21. Cooper P.D., Gleissler E., Tannock G.A. Attempts to extend the genetic map of poliovirus temperature-sensitive mutants. J. Gen. Virol. 1975;29:109–120. doi: 10.1099/0022-1317-29-1-109. [DOI] [PubMed] [Google Scholar]
  22. Cooper P.D. Genetics of picornaviruses. Comprehensive Virology. 1977;9:133–208. [Google Scholar]
  23. Fleming J.O., Trousdale M.D., dl Zaatari F.A., Stohlman S.A., Weiner L.P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J. Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Frana M.F., Behnke J.N., Sturman L.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Host dependent differences in proteolytic cleavage and cell fusion. J. Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gallagher T.M., Escarmis C., Buchmeier M.J. Alteration of the pH dependence of coronavirus-induced cell fusion: Effect of mutations in the spike glycoprotein. J. Virol. 1991;65:1916–1928. doi: 10.1128/jvi.65.4.1916-1928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Glickman B.W., Radman M. Vol. 77. 1980. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction; pp. 1063–1067. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hahn C.S., Lustig S., Strauss E.G., Strauss J.H. Vol. 85. 1988. Western equine encephalitis virus is a recombinant virus; pp. 5997–6001. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hahn Y.S., Garkovi A., Rice C.M., Strauss E.G., Strauss J.H. Mapping RNA- temperature sensitive mutants of sindbis virus: Complementation group F mutants have lesions in NSP4. J. Virol. 1989;63:1194–1202. doi: 10.1128/jvi.63.3.1194-1202.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hahn Y.S., Strauss E.G., Strauss J.H. Mapping of RNA- temperature sensitive mutants of Sindbis virus: Assignment of complementation groups A, B, and G to nonstructural proteins. J. Virol. 1989;63:3142–3150. doi: 10.1128/jvi.63.7.3142-3150.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Holland J.J. Defective interfering rhabdoviruses. In: Wagner R.R., editor. The Rhabdoviruses. Plenum; New York: 1987. pp. 297–360. [Google Scholar]
  31. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Keck J.G., Stohlman S.A., Soe L.H., Making S., Lai M.M.C. Multiple recombination sites at the 5′ end of the murine coronavirus RNA. Virology. 1987;156:331–341. doi: 10.1016/0042-6822(87)90413-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Keck J.G., Matsushima G.K., Making S., Fleming J.O., Vannier D.M., Stohlman S.A., Lai M.M.C. In vivo RNARNA recombination of coronavirus in mouse brain. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Keck J.G., Soe L.H., Making S., Stohlman S.A., Lai M.M.C. RNA recombination of murine coronaviruses: Recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2. J. Virol. 1988;62:1989–1998. doi: 10.1128/jvi.62.6.1989-1998.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. King A.M., McCahon D., Slade W.R., Newman J.W.I. Recombination in RNA. Cell. 1982;29:921–928. doi: 10.1016/0092-8674(82)90454-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. King A.M.Q., McCahon D., Saunders K., Newman J.W.I., Slade W.R. Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus. Virus Res. 1985;3:373–384. doi: 10.1016/0168-1702(85)90437-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. King A.M.Q., Ortlepp S.A., Newman J.W., McCahon D. Genetic recombination in RNA viruses. In: Rowlands R.J., Mayo M.A., Mahy B.N., editors. The molecular biology of the positive strand RNA viruses. Academic Press; London: 1987. pp. 129–152. [Google Scholar]
  38. King A.M.Q. Preferred sites of recombination in poliovirus RNA: An analysis of 40 intertypic cross-over sequences. Nucleic Acids Res. 1988;16:11705–11722. doi: 10.1093/nar/16.24.11705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Koolen M.J.M., Osterhaus A.D.M.E., Van Steenis G., Horzinek M.C., Van der Zeijst B.A.M. Temperature-sensitive mutants of mouse hepatitis virus strain A59: Isolation, characterization and neuropathogenic properties. Virology. 1983;125:393–402. doi: 10.1016/0042-6822(83)90211-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kusters J.G., Niesters H.G.M., Lenstra J.A., Horzinek M.C., Van der Zeijst B.A.M. Phylogeny of antigenic variants of avian coronavirus IBV. Virology. 1989;169:217–221. doi: 10.1016/0042-6822(89)90058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lai M.M.C. Coronavirus: Organization, replication and expression of genome. Ann. Rev. Microbiol. 1990;44:303–333. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
  43. Lai M.M.C., Baric R.S., Making S., Keck J.G., Egbert J., Leibowltz J.L., Stohlman S.A. Recombination between nonsegmented RNA genomes of murine coronavirus. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lake J.R., Priston R.A.J., Slade W.R. A genetic recombination map of foot-and-mouth disease virus. J. Gen. Virol. 1975;27:355–367. doi: 10.1099/0022-1317-27-3-355. [DOI] [PubMed] [Google Scholar]
  45. La Monica N., Banner L.R., Morris V.L., Lai M.M.C. Localization of extensive deletions in the structural genes of two neurotropic variants of murine coronavirus JHM. Virology. 1991;182:883–888. doi: 10.1016/0042-6822(91)90635-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lee H.-J., Shieh C.-K., Gorbalenya A.E., Koonin E.V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M.M.C. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991;180:567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Leibowitz J.L., De Vries J.R., Haspel M.V. Genetic analysis of murine hepatitis virus strain JHM. J. Virol. 1982;42:1080–1087. doi: 10.1128/jvi.42.3.1080-1087.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van der Zeijst B.A.M., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Luytjes W., Bredenbeek P.J., Noten A.F., Horzinek M.C., Spaan W.J. Sequence of mouse hepatitis virus A59 mRNA2: Indications for RNA-recombination between coronaviruses and influenza C virus. Virology. 1988;166:415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Mahy B.W.J.M., Siddell S., Wege H., ter Meulen V. RNA dependent RNA polymerase activity in murine coronavirus infected cells. J. Gen. Virol. 1983;64:103–111. doi: 10.1099/0022-1317-64-1-103. [DOI] [PubMed] [Google Scholar]
  51. Making S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus mRNAs can be freely reassorted: Evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Making S., Keck J., Stohlman S.A., Lai M.M.C. High frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Making S., Fleming J.O., Keck J.G., Stohlman S.A., Lai M.M.C. Vol. 84. 1987. RNA recombination of coronaviruses; localization of neutralizing epitopes and neuropathogenic determinants on the carboxy terminus of peplomers; pp. 6567–6571. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Making S., Shieh C.-K., Keck J.G., Lai M.M.C. Primary structure and translation of a defective interfering RNA of murine coronavirus. Virology. 1989;166:550–560. doi: 10.1016/0042-6822(88)90526-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Making S., Lai M.M.C. High frequency leader sequence switching during coronavirus defective RNA replication. J. Virol. 1989;63:5285–5292. doi: 10.1128/jvi.63.12.5285-5292.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Making S., Joo M., Making J.K. A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic insertion. J. Virol. 1991;65:6031–6041. doi: 10.1128/jvi.65.11.6031-6041.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Martin J.P., Koehren F., Rannou J.-J., Kirn A. Temperature sensitive mutants of mouse hepatitis virus type 3(MHV-3): Isolation, biochemical and genetic characterization. Arch. Virol. 1988;100:147–160. doi: 10.1007/BF01487679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Monroe S., Schlesinger S. Vol. 80. 1983. RNAs from two independently isolated defective interfering particles of Sinbdis virus contain a cellular RNA sequence at their 5′ ends; pp. 3279–3283. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Pachuk C.J., Bredenbeek P.J., Zoltick P.W., Spaan W.J.M., Weiss S.R. Molecular cloning of the gene encoding the putative polymerase of mouse hepatitis coronavirus, strain A59. Virology. 1989;171:141–148. doi: 10.1016/0042-6822(89)90520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Rasschaert D., Duarte M., Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990;71:2599–2607. doi: 10.1099/0022-1317-71-11-2599. [DOI] [PubMed] [Google Scholar]
  62. Routledge E., Stauber R., Pfleiderer M., Siddell S.G. Analysis of murine coronavirus surface glycoproteins functions by using monoclonal antibodies. J. Virol. 1991;65:254–262. doi: 10.1128/jvi.65.1.254-262.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Sarnow P., Jacobson S.J., Najita L. Poliovirus genetics. Curr. Top. Microbiol. Immunol. 1990;161:155–188. doi: 10.1007/978-3-642-75602-3_6. [DOI] [PubMed] [Google Scholar]
  64. Sawicki S.G., Sawicki D.L. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J. Virol. 1990;64:1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Schaad M.C., Stohlman S.A., Egbert J., Lum K., Fu K., Wei T., Baric R.S. Genetics of murine coronavirus transcription: Identification of a cistron required for MHV negative strand synthesis. Virology. 1990;177:634–645. doi: 10.1016/0042-6822(90)90529-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Schmidt I., Skinner M.A., Siddell S.G. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  67. Schwartz B., Routledge E., Siddell S.G. Murine coronavirus nonstructural protein ns2 is not essential for virus replication in transformed cells. J. Virol. 1990;64:4784–4791. doi: 10.1128/jvi.64.10.4784-4791.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Sethna P.B., Hung S.L., Brian D.A. Vol. 86. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons; pp. 5626–5630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Sethna P.B., Hofman M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 1991;65:320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Shier C.-K., Lee H.-J., Yokomori K., La Monica N., Making S., Lai M.M.C. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 1989;63:3729–3736. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Siddell S. Coronavirus JHM: Coding assignments of subgenomic mRNAs. J. Gen. Virol. 1983;64:113–125. doi: 10.1099/0022-1317-64-1-113. [DOI] [PubMed] [Google Scholar]
  72. Snijder E.J., Denboon J.A., Horzinek M.C., Spaan W.J.M. Comparison of the genome organization of Toro- and Coronaviruses: Evidence for two nonhomologous RNA recombination events during Berne virus Evolution. Virology. 1991;180:448–452. doi: 10.1016/0042-6822(91)90056-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Soe L.H., Shier C.-K., Baker S.C., Chang M.-F., Lai M.M.C. Sequence and translation of the murine coronavirus 5′-end genomic RNA reveals the N-terminal structure of the putative polymerase. J. Virol. 1987;61:3968–3976. doi: 10.1128/jvi.61.12.3968-3976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Stohlman S.A., Baric R.S., Nelson G.N., Soe L.H., Welter L.M., Deans R.J. Specific interaction between the coronavirus leader RNA and nucleocapsid protein. J. Virol. 1988;62:4288–4295. doi: 10.1128/jvi.62.11.4288-4295.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Stohlman S.A., Lai M.M. Phosphoproteins of murine hepatitis virus. J. Virol. 1979;32:672–675. doi: 10.1128/jvi.32.2.672-675.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sturman L.S., Holmes K. The novel glycoproteins of coronaviruses. Trends Biochem. Sci. 1985;10:17–20. [Google Scholar]
  78. Sturman L.S., Richard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronaviruses: Activation of cell fusing activity of virions by trypsin and separation of two different 90 K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Taguchi F., Siddell S., Wege H., Massa P., ter Meulen V. Characterization of JHMV variants isolated from rat brain and cultured neural cells after wild type JHMV infection. Adv. Exp. Med. Biol. 1987;218:343–349. doi: 10.1007/978-1-4684-1280-2_43. [DOI] [PubMed] [Google Scholar]
  80. Tolskaya E.A., Romanova L.I., Blinov V.M., Viktorova E.G., Sinyakov A.N., Kolesinkova M.S., Agol V.I. Studies on the recombination between RNA genomes of poliovirus: The primary structure and nonrandom distribution of crossover regions in the genomes of intertypic poliovirus recombinants. Virology. 1987;161:54–61. doi: 10.1016/0042-6822(87)90170-x. [DOI] [PubMed] [Google Scholar]
  81. Weismiller D.G., Sturman L.S., Buchmeier M.J., Fleming J.O., Holmes K.V. Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions. J. Virol. 1990;64:3051–3055. doi: 10.1128/jvi.64.6.3051-3055.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Weiss B.G., Schlesinger S. Recombination between sindbis virus RNAs. J. Virol. 1991;65:4017–4025. doi: 10.1128/jvi.65.8.4017-4025.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Yokomori K., LaMonica N., Making S., Shier C.-K., Lai M.M.C. Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology. 1989;173:683–691. doi: 10.1016/0042-6822(89)90581-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Yokomori K., Lai M.M.C. Mouse hepatitis virus S RNA sequence revealed that nonstructural proteins ns4 and ns5a are not essential for murine coronavirus replication. J. Virol. 1991;65:5605–5608. doi: 10.1128/jvi.65.10.5605-5608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Yoo D., Parker M.D., Babiulk L.A. The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology. 1991;180:395–399. doi: 10.1016/0042-6822(91)90045-D. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES