Skip to main content

PMC Search Update

PMC Beta search will replace the current PMC search the week of September 7, 2025. Try out PMC Beta search now and give us your feedback. Learn more

Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 23;185(1):32–38. doi: 10.1016/0042-6822(91)90750-6

Structure of the glycoprotein gene of sonchus yellow net virus, a plant rhabdovirus

Karen-Beth Goldberg 1, Brett Modrell 1,2, Bradley I Hillman 1,3, Louis A Heaton 1,4, Tae-Jin Choi 1, AO Jackson 1,5
PMCID: PMC7130609  PMID: 1926779

Abstract

The nucleotide sequence of the glycoprotein (G) gene of sonchus yellow net virus (SYNV), a plant rhabdovirus, was determined from viral genomic and mRNA cDNA clones. The G cistron is 2045 nucleotides (nt) long and the G protein mRNA open reading frame (ORF), as determined from the cDNA sequence, contains 1896 nt and encodes a protein of 632 amino acids. Immunoblots with antibodies elicited against the purified glycoprotein from virus particles reacted with a fusion protein produced in Escherichia coli, indicating that the cloned ORF encodes the G protein. The 5′ end of the G protein mRNA corresponds to nt 5111, relative to the 3′ end of the viral (minus sense) genome, as determined by primer extension from mRNA isolated from infected plants, and extends to nt position 7155 on the genomic RNA. A 34-nt untranslated 5′ leader sequence and a 115-nt untranslated 3′ end flank the ORF on the mRNA. The gene junctions on either side of the G gene on the genomic RNA are identical to those previously described for other SYNV genes and are similar to sequences separating genes of animal rhabdoviruses. The predicted molecular weight of the G protein is 70,215 Da, a value less than the 77,000 Da estimated for the glycosylated G protein from virus particles. The deduced amino acid sequence of the SYNV G protein shares little direct relatedness with the G proteins of other rhabdoviruses, but appears to contain a similar signal sequence, a transmembrane anchor domain, and glycosylation signals. In addition, the SYNV G protein contains a putative nuclear targeting site near the carboxy terminus, which may be involved in transit to the nuclear membrane prior to morphogenesis.

Footnotes

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence data base and have been assigned accession number M73626.

References

  1. Anilionis A., Wunner W.H., Curtis P.J. Structure of the glycoprotein gene in rabies virus. Nature (London) 1981;294:275–277. doi: 10.1038/294275a0. [DOI] [PubMed] [Google Scholar]
  2. Baneriee A.K. Transcription and replication of rhabdoviruses. Microbiol. Rev. 1987;51:66–87. doi: 10.1128/mr.51.1.66-87.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christie S.R., Christie R.G., Edwardson J.R. Transmission of a bacilliform virus of sowthistle and Bidens pilosa. Phytopathology. 1974;64:840–845. [Google Scholar]
  4. DeLuca N.A., Schaffer P.A. Physical and functional domains of the herpes simplex virus transcriptional regulatory protein ICP4. J. Virol. 1988;62:732–743. doi: 10.1128/jvi.62.3.732-743.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emerson S.U. Transcription of vesicular stomatitis virus. In: Wagner R.R., editor. The Rhabdoviruses. Plenum; New York: 1987. pp. 245–269. [Google Scholar]
  6. Francki R.I.B. Plant rhabdoviruses. Adv. Virus Res. 1973;18:257–345. [Google Scholar]
  7. Heaton L.A., Zuidema D., Jackson A.O. Structure of the M2 protein gene of sonchus yellow net virus. Virology. 1987;161:234–241. doi: 10.1016/0042-6822(87)90190-5. [DOI] [PubMed] [Google Scholar]
  8. Heaton L.A., Hillman B.I., Hunter B.G., Zuidema D., Jackson A.O. Vol. 86. 1989. The physical map of sonchus yellow net virus genome, a plant rhabdovirus with six genes and conserved gene-junction sequences; pp. 8665–8668. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hillman B.I., Heaton L.A., Hunter B.G., Modrell B., Jackson A.O. Structure of the gene encoding the M1 protein of sonchus yellow net virus. Virology. 1990;179:201–207. doi: 10.1016/0042-6822(90)90289-4. [DOI] [PubMed] [Google Scholar]
  10. Hunter B.G., Richardson J., Dietzgen R., Karl A., Sylvester E.S., Jackson A.O., Morris T.J. Purification and characterization of strawberry crinkle virus. Phytopathology. 1990;80:282–287. [Google Scholar]
  11. Jackson A.O. Partial characterization of the structural proteins of sonchus yellow net virus. Virology. 1978;87:172–181. doi: 10.1016/0042-6822(78)90169-1. [DOI] [PubMed] [Google Scholar]
  12. Jackson A.O., Christie S.R. Purification and some physicochemical properties of sonchus yellow net virus. Virology. 1977;77:344–355. doi: 10.1016/0042-6822(77)90431-7. [DOI] [PubMed] [Google Scholar]
  13. Jackson A.O., Christie S.R. Descriptions of Plant Viruses. Commonw. Mycol. Inst., Assoc. Appl. Bio; Kew, Surrey, England: 1979. Sonchus yellow net virus. No. 205. [Google Scholar]
  14. Jackson A.O., Francki R.I.B., Zuidema D. Biology structure and replication of plant rhabdoviruses. In: Wagner R.R., editor. The Rhabdoviruses. Plenum; New York: 1987. pp. 427–508. [Google Scholar]
  15. Jones R.W., Jackson A.O. Replication of sonchus yellow net virus in infected protoplasts. Virology. 1990;179:815–820. doi: 10.1016/0042-6822(90)90149-l. [DOI] [PubMed] [Google Scholar]
  16. Joshi C.P. An inspection of the domain between the putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987;15:6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kalderon D., Roberts B.L., Richardson W.D., Smith A.E. A short amino acid sequence able to specify nuclear location. Cell. 1984;39:499–509. doi: 10.1016/0092-8674(84)90457-4. [DOI] [PubMed] [Google Scholar]
  18. Knipe D.M. The role of viral and cellular nuclear proteins in herpes simplex virus replication. In: Maramorosch K., Murphy F.A., Shatkin A.J., editors. Vol. 37. Academic Press; New York: 1989. pp. 85–123. (Advances in Virus Research). [DOI] [PubMed] [Google Scholar]
  19. Koener I.F., Passavant C.W., Kurath G., Leong J. Nucleotide sequence of a cDNA clone carrying the glycoprotein gene of infectious hematopoietic necrosis virus, a fish rhabdovirus. J. Virol. 1987;61:1342–1349. doi: 10.1128/jvi.61.5.1342-1349.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kozak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 1981;9:5233–5252. doi: 10.1093/nar/9.20.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984;12:857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lutcke H.A., Chow K.C., Mickel F.S., Moss K.A., Kern H.F., Scheele G.A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987;6:43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McGeoch D.I., Dolan A., Donald S., Brauer D.H.K. Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res. 1986;4:1727–1745. doi: 10.1093/nar/14.4.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Milner J.J., Jackson A.O. Sequence complementarity of sonchus yellow net virus RNA with RNA isolated from the polysomes of infected tobacco. Virology. 1979;97:90–99. doi: 10.1016/0042-6822(79)90375-1. [DOI] [PubMed] [Google Scholar]
  26. Nath S.T., Nayak D.P. Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1) Mol. Cell. Biol. 1990;10:4139–4145. doi: 10.1128/mcb.10.8.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Paterson T., Everett R.D. Mutational dissection of the HSV-1 immediate-early protein Vmw175 involved in transcriptional transactivation and repression. Virology. 1988;166:186–196. doi: 10.1016/0042-6822(88)90160-2. [DOI] [PubMed] [Google Scholar]
  28. Perlman D., Halvorson I. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 1983;167:391–409. doi: 10.1016/s0022-2836(83)80341-6. [DOI] [PubMed] [Google Scholar]
  29. Raabe T., Schelle-Prinz B., Siddell S.G. Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. J. Gen. Virol. 1990;71:1065–1073. doi: 10.1099/0022-1317-71-5-1065. [DOI] [PubMed] [Google Scholar]
  30. Rezaian M.A., Heaton L.A., Pederson K., Milner J.J., Jackson A.O. Size and complexity of polyadenylated RNAs induced in tobacco infected with sonchus yellow net virus. Virology. 1983;131:221–229. doi: 10.1016/0042-6822(83)90547-0. [DOI] [PubMed] [Google Scholar]
  31. Rose J.K., Gallione C.J. Nucleotide sequences of the mRNAs encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions. J. Virol. 1981;39:519–528. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ruther U., Muller-Hill B. Easy identification of cDNA clones. EMBO J. 1983;2:1791–1794. doi: 10.1002/j.1460-2075.1983.tb01659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Selstam E., Jackson A.O. Lipid composition of sonchus yellow net virus. J. Gen. Virol. 1983;64:1607–1613. [Google Scholar]
  34. Teninges D., Bras-Herreng F. Rhabdovirus sigma, the hereditary CO2 sensitivity agent of Drosophile: Nucleotide sequence of a cDNA clone encoding the glycoprotein. J. Gen. Virol. 1987;68:2625–2638. doi: 10.1099/0022-1317-68-10-2625. [DOI] [PubMed] [Google Scholar]
  35. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. Vol. 83. 1986. Walking along the rabies genome: Is the large G-L intergenic region a remnant gene? pp. 3914–3918. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Van Beek N.A.M., Lohus D., Dukstra J., Peters D. Morphogenesis of sonchus yellow net virus in cowpea protoplasts. J. Ultrastruct. Res. 1985;90:294–303. [Google Scholar]
  37. Wagner R.R. Rhabdovirus biology and infection. In: Wagner R.R., editor. The Rhabdoviruses. Plenum; New York: 1987. pp. 9–73. [Google Scholar]
  38. Wiley D.C., Skehel J.J. Viral membranes. In: Fields D.N., editor. Virology. Raven Press; New York: 1990. pp. 68–85. [Google Scholar]
  39. Wunner W.H. Rabies Viruses—Pathogenesis and immunity. In: Wagner R.R., editor. The Rhabdoviruses. Plenum; New York: 1987. pp. 361–426. [Google Scholar]
  40. Zuidema D., Heaton L.A., Jackson A.O. Structure of the nucleocapsid protein gene of sonchus yellow net virus. Virology. 1987;159:373–380. doi: 10.1016/0042-6822(87)90476-4. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES