Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jul 22;115(2):334–344. doi: 10.1016/0042-6822(81)90115-X

Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein

Kathryn V Holmes ∗,1, Elizabeth W Doller , Lawrence S Sturman
PMCID: PMC7130623  PMID: 7314449

Abstract

Tunicamycin has different effects on the glycosylation of the two envelope glycoproteins of mouse hepatitis virus (MHV), a coronavirus. Unlike envelope glycoproteins of other viruses, the transmembrane glycoprotein El is glycosylated normally in the presence of tunicamycin. This suggests that glycosylation of El does not involve transfer of core oligosaccharides from dolichol pyrophosphate intermediates to asparagine residues, but may occur by 0-linked glycosylation of serine or threonine residues. Synthesis of the peplomeric glycoprotein E2 is not readily detectable in the presence of tunicamycin. Inhibition of N-linked glycosylation of E2 by tunicamycin either prevents synthesis or facilitates degradation of the protein moiety of E2. Radiolabeling with carbohydrate precursors and borate gel electrophoresis of glycopeptides show that different oligcsaccharide side chains are attached to El and E2. The two coronavirus envelope glycoproteins thus appear to be glycosylated by different mechanisms. In tunicamycin-treated cells, noninfectious virions lacking peplomers are formed at intracytoplasmic membranes and released from the cells. These virions contain normal amounts of nucleocapsid protein and glycosylated El, but lack E2. Thus the transmembrane glycoprotein El is the only viral glycoprotein required for the formation of the viral envelope or for virus maturation and release. The peplomeric glycoprotein E2 appears to be required for attachment to virus receptors on the plasma membrane. The coronavirus envelope envelope glycoprotein E1 appears to be a novel type of viral glycoprotein which is post-translationally glycosylated by a tunicamycin-resistant process that yields oligosaccharide side chains different from those of N-linked glycoproteins. These findings suggest that El may be particularly useful as a model for studying the biosynthesis, glycosylation, and intracellular transport of 0-linked glycoproteins.

References

  1. Andrewes C., Pereira H.G., Wildy P. Viruses of Vertebrates. Bailliere Tindall; London: 1978. pp. 174–186. [Google Scholar]
  2. Baenziger J.U., Fiete D. Galactose and N-acetylgalactosamine specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell. 1980;22:611–620. doi: 10.1016/0092-8674(80)90371-2. [DOI] [PubMed] [Google Scholar]
  3. Burke D., Keegstra K. Carbohydrate structure of Sindbis virus glycoprotein E2 from virus grown in hamster and chicken cells. J. Virol. 1979;29:546–554. doi: 10.1128/jvi.29.2.546-554.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cash P., Hendershot L., Bishop D.H.L. The effect of glycosylation inhibitors on the maturation and intracellular polypeptide synthesis induced by snowshoe hare Bunyavirus. Virology. 1980;103:235–240. doi: 10.1016/0042-6822(80)90142-7. [DOI] [PubMed] [Google Scholar]
  5. Choppin P.W., Scheid A. The role of viral glycoproteins in adsorption, penetration and pathogenicity of viruses. Rev. Infect. Dis. 1980;2:40–61. doi: 10.1093/clinids/2.1.40. [DOI] [PubMed] [Google Scholar]
  6. Compans R.W., Holmes K.V., Dales S., Choppin P.W. An electron microscopic study of moderate and virulent virus-cell interactions of the parainfluenza virus SV5. Virology. 1966;30:411–422. doi: 10.1016/0042-6822(66)90119-x. [DOI] [PubMed] [Google Scholar]
  7. Diggelman H. Biosynthesis of an unglycosylated envelope glycoprotein of Rous sarcoma virus in the presence of tunicamycin. J. Viral. 1979;30:799–804. doi: 10.1128/jvi.30.3.799-804.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doller E.W., Holmes K.V. Amer. Soc. Microbiol; Washington, D. C: 1980. Different Intracellular Transportation of the Envelope Glycoproteins El and E2 of the Coronavirus MHV; p. 267. (Abstract) [Google Scholar]
  9. Elbein A.D. The role of lipid-linked saccharides in the biosynthesis of complex carbohydrates. Anna. Rev. Plant Physiol. 1979;30:239–272. [Google Scholar]
  10. Garwes D.J. In: Viral Enteritis in Humans and Animals. Bricout F., Scherer R., editors. 1979. (Inserm Colloque 90). [Google Scholar]
  11. Ghosh H.P. Synthesis and maturation of glycoproteins of enveloped animal viruses. Rev. Infect Dis. 1980;2:26–39. doi: 10.1093/clinids/2.1.26. [DOI] [PubMed] [Google Scholar]
  12. Gibson R., Schlesinger S., Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
  13. Hasilik A. Biosynthesis of lysosomal enzymes. Trends Biochem Sci. 1980;5(9):237–240. [Google Scholar]
  14. Klenk H.-D., Rott R. Cotranslational and posttranslational processing of viral glycoproteins. Curr. Top. Microbiol Inamunol. 1980;90:19. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  15. Lai M.M.C., Stohlman S.A. RNA of mouse hepatitis virus. J. Viral. 1978;26:236–248. doi: 10.1128/jvi.26.2.236-242.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leavitt R., Schlesinger S., Kornfeld S. Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J. Biol. Chem. 1977;252:9018–9023. [PubMed] [Google Scholar]
  17. Lehle L., Tanner W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 1976;71:167–170. doi: 10.1016/0014-5793(76)80922-2. [DOI] [PubMed] [Google Scholar]
  18. Macnaughton M.R. The genomes of three coronaviruses. FEBS Lett. 1978;94:191–194. doi: 10.1016/0014-5793(78)80935-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrison T.G., McQuain C.O., Simpson D. Assembly of viral membranes: Maturation of the vesicular stomatitis glycoprotein in the presence of tunicamycin. J. Wrol. 1978;24:368–374. doi: 10.1128/jvi.28.1.368-374.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakamura K., Compans R.W. Effects of glucosamine, 2-deoxy-D-glucose and tunicamycin on glycosylation, sulfation and assembly of influenza viral proteins. Virology. 1978;84:303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  21. Nakamura K., Compans R.W. Glycopeptide components of influenza viral glycopeptides. Virology. 1978;86:432–442. doi: 10.1016/0042-6822(78)90083-1. [DOI] [PubMed] [Google Scholar]
  22. Niemann H., Klenk H.D. In: The Biochemistry and Biology of Coronaviruses. ter Meulen V., Siddell S., Wege H., editors. Plenum; London: 1981. [Google Scholar]
  23. Olden K., Pratt R.M., Yamada K.M. Role of carbohydrates in protein secretion and turnover: Effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell. 1978;13:461–473. doi: 10.1016/0092-8674(78)90320-3. [DOI] [PubMed] [Google Scholar]
  24. Pizer L.I., Cohen G.H., Eisenberg R.J. Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. J. Viral. 1980;34:142–153. doi: 10.1128/jvi.34.1.142-153.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prehm P., Scheid A., Choppin P.W. The carbohydrate structure of the glycoproteins of the paramyxovirus SV5 grown in bovine kidney cells. J. Biol. Chem. 1979;254:9669–9676. [PubMed] [Google Scholar]
  26. Rothman J.E., Katz F.N., Lodish H.F. Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. Cell. 1978;15:1447–1454. doi: 10.1016/0092-8674(78)90068-5. [DOI] [PubMed] [Google Scholar]
  27. Rothman J.E., Lodish H.F. Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 1977;269:775–780. doi: 10.1038/269775a0. [DOI] [PubMed] [Google Scholar]
  28. Rottier P.J.M, Spann W.J.M., Horzinek M.C., van Der Zeijst B.A.M. Translation of three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes. J. Virol. 1981;38:20–26. doi: 10.1128/jvi.38.1.20-26.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwarz R.T., Datema R. Inhibitors of protein glycosylation. Trends Biochem Sci. 1980;5(3):65–67. [Google Scholar]
  30. Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, influenza and avian sarcoma virus by tunicamycin. J. Viral. 1976;12:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schwarz R.T., Schmidt M.F.G., Datema R. Inhibition of glycosylation of viral glycoproteins. Biochem Soc Trans. 1979;7:322–326. doi: 10.1042/bst0070322. [DOI] [PubMed] [Google Scholar]
  32. Sharon N., Lis H. Glycoproteins; research booming on long-ignored, ubiquitous compounds. Chem Eng. News. 1981;59:21–44. doi: 10.1007/BF00238511. [DOI] [PubMed] [Google Scholar]
  33. Shida H., Dales S. Biogenesis of vaccinia: Carbohydrate of the hemagglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  34. Siddell S.G., Wege H., Barthel A., ter Meulen V. Coronavirus JHM: Cell free synthesis of structural protein p60. J. Viral. 1980;33:10–17. doi: 10.1128/jvi.33.1.10-17.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Slomiany A., Slomiany B.L. Structures of the acidic oligosaccharides isolated from rat sublingual glycoprotein. J. Biol. Chem. 1978;253:7301–7306. [PubMed] [Google Scholar]
  36. Sprio R.G., Bhoyroo Structure of the 0-glycosidically linked carbohydrate units of fetuin. J. Biol. Chem. 1974;249:5704–5717. [PubMed] [Google Scholar]
  37. Stahl P.D., Schlesinger P.H. Receptor-mediated pinocytosis of mannose/N-acetylglucosamine-terminated glycoproteins and lysosomal enzymes by macrophages. Trends Biochem Sci. 1980;5(7):194–196. [Google Scholar]
  38. Stallcup K.C., Fields B.N. The replication of measles virus in the presence of tunicamycin. Virology. 1981;108:391–404. doi: 10.1016/0042-6822(81)90447-5. [DOI] [PubMed] [Google Scholar]
  39. Sturman L.S. Characterization of a coronavirus. 1. Structural proteins: Effects of preparative conditions on the migration of protein in polyacrylamide gels. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sturman L.S. In: The Biochemistry and Biology of Coronaviruses. ter Meulen V., Siddell S., Wege H., editors. Plenum; London: 1981. [Google Scholar]
  41. Sturman L.S., Holmes K.V. Characterization of a coronavirus. II. Glycoproteins of the viral envelope; tryptic peptide analysis. Virology. 1977;77:650–666. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Viral. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sturman L.S., Takemoto K.K. Enhanced growth of a murine coronavirus in transformed mouse cells. Infect Immun. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Takatsuki A., Arima K., Tamura G. Tunicamycin, a new antibiotic. J. Antibiot. 1971;24:215–223. doi: 10.7164/antibiotics.24.215. [DOI] [PubMed] [Google Scholar]
  45. Thomas D.B., Winzler R.J. Structural studies on human erythrocyte glycoproteins. J. Biol. Chem. 1969;244:5943–5946. [PubMed] [Google Scholar]
  46. Tomita M., Marchesi V.T. Vol. 72. 1975. Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin; pp. 2964–2968. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tyrrell D.A.J., Alexander D.J., Almeida J.F., Cunningham C.H., Easterday B.C., Garwes D.J., Hierholzer J.C., Kapikian A., Macnaughton M.R., McIntosh K. Coronaviridae: Second Report. Intervirology. 1978;10:321–328. doi: 10.1159/000148996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wege H., Muller A., ter Meulen V. Genomic RNA of the murine coronavirus JHM. J. Gen. Vird. 1978;41:217–227. doi: 10.1099/0022-1317-41-2-217. [DOI] [PubMed] [Google Scholar]
  49. Weitzman S., Scott V., Keegstra K. Analysis of glycopeptides as borate complexes by polyacrylamide gel electrophoresis. Anal Biochem. 1979;97:438–449. doi: 10.1016/0003-2697(79)90099-x. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES