Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2006 Sep 5;126(2):669–677. doi: 10.1016/S0042-6822(83)80022-1

Coronaviruses SD and SK share extensive nucleotide homology with murine coronavirus MHV-A59, more than that shared between human and murine coronaviruses

Susan R Weiss 1,1
PMCID: PMC7130655  PMID: 6687965

Abstract

A cDNA probe representing the genome of mouse hepatitis virus (MHV) strain A59 (MHV-A59) was used to measure nucleotide sequence homologies among murine and human coronaviruses and the SD and SK coronaviruses isolated by Burks et al. Since SD and SK were isolated by inoculation of multiple sclerosis (MS) central nervous system (CNS) tissue into mice or cultured mouse cells, it is important to determine their relationships to other murine and human coronavirus isolates. Our results indicate that SD and SK share almost complete nucleotide homology (approximately 90%) with MHV-A59 and generate subgenomic RNAs of the same sizes as MHV-A59. The human coronavirus (HCV) strains tested show less homology with MHV-A59. The immunologically unrelated HCV-229 E shows no nucleotide homology with MHV-A59. The immunologically crossreactive HCV-OC43 shows nucleotide homology with MHV-A59 by blot hybridization but not when hybridized in solution and assayed by S1 nuclease digestion.

References

  1. Alwine J.C., Kemp D.J., Stark G.R. Vol. 14. 1977. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl paper and hybridization with DNA probes; pp. 5350–5354. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey J., Davidson N. Methylmercury as a reversible denaturing agent for agarose-gel electrophoresis. Anal. Biochem. 1976;70:75–85. doi: 10.1016/s0003-2697(76)80049-8. [DOI] [PubMed] [Google Scholar]
  3. Burks J.S., DeVald B.L., Jankovsky L.D., Gerdes J.C. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209:933–934. doi: 10.1126/science.7403860. [DOI] [PubMed] [Google Scholar]
  4. Chamberlain J.P. Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor, sodium salicylate. Anal. Biochem. 1979;48:132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  5. Cheley S., Anderson R., Cupples M.J., Lee Chan E.C.M., Morris V.L. Intracellular murine hepatitis virus-specific RNAs contain common sequences. Virology. 1981;112:596–604. doi: 10.1016/0042-6822(81)90305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheley S., Morris V.L., Cupples M.J., Anderson R. RNA and polypeptide homology among murine coronaviruses. Virology. 1981;115:310–321. doi: 10.1016/0042-6822(81)90113-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerdes J.C., Jankovsky L.D., DeVald B.L., Klein I., Burks J.S. Antigenic relationships of coronaviruses detectable by plaque neutralization, competitive enzyme linked immunosorbent assay, and immunoprecipitation. In: ter Meulen V., Siddell S.G., editors. Proceedings of the Symposium on the Biology and Biochemistry of Coronaviruses. Plenum; New York: 1981. [Google Scholar]
  8. Gerdes J.C., Klein I., DeVald B.L., Burks J.S. Coronavirus isolates SK and SD from multiple sclerosis patients are serologically related to murine coronaviruses A59 and JHM and human coronavirusOC43 but not to human coronavirus 229E. J. Virol. 1981;38:231–238. doi: 10.1128/jvi.38.1.231-238.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hierholzer J.C., Suggs M.T., Hall E.C. Standardized viral hemagglutination and hemagglutination-inhibition tests II. Description and statistical evaluation. Appl. Microbiol. 1969;18:824–833. doi: 10.1128/am.18.5.824-833.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howley P.M., Israel M.A., Low M.-F., Martin M.A. A rapid method for detecting and mapping homology between heterologous DNAs. J. Biol. Chem. 1979;254:4876–4883. [PubMed] [Google Scholar]
  11. Kaye H.S., Dowdle W.R. Some characteristics of hemagglutination of certain strains of “IBV-like” virus. J. Infect. Dis. 1969;120:576–581. doi: 10.1093/infdis/120.5.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh H.C., Stohlman S. Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence diversion from hepatropic strain MHV-3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lai M.M.C., Stohlman S. Comparative analysis of RNA genomes of mouse hepatitis virus. J Virol. 1981;38:661–670. doi: 10.1128/jvi.38.2.661-670.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laporte J., Bobulesco P., Rossi F. Une lignée cellulaire particulièrement sensible a la réplication du coronavirus entéritique: Les cellules HRT 18. C. R. Acad. Sci. Paris. 1980:298. [PubMed] [Google Scholar]
  15. Lehrch H., Diamond D., Wozney J.M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977;96:4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  16. Leibowitz J.L., Wilhelmsen K.C., Bond C.W. The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:39–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leong J.A., Garapin A.C., Jackson N., Fanshier L., Levinson W.E., Bishop J.M. Virus-specific ribonucleic acid in cells producing Rous sarcoma virus: Detection and characterization. J. Virol. 1972;9:891–902. doi: 10.1128/jvi.9.6.891-902.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McIntosh K., Becker W.B., Channock R.M. Vol. 58. 1967. Growth in suckling mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease; pp. 2268–2273. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McIntosh K. Coronaviruses: A comparative review. Curr. Top. Microbiol. Immunol. 1974;63:86–129. [Google Scholar]
  20. Nagashima K., Wege H., Meyermann R., ter Meulen V. Coronavirus induced subacute demyelinating encephalomyelitis in rats: A morphological analysis. Acta Neuropathol. 1978;44:63–70. doi: 10.1007/BF00691641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pederson N.C., Ward J., Mengeling W.C. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Arch. Virol. 1978;58:45–53. doi: 10.1007/BF01315534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robb J.A., Bond C.W. Pathogenic murine coronaviruses. I. Characterization of biological behavior in vitro and virus specific intracellular RNA of strongly neurotropicJHMV and weakly neurotropic A59V viruses. Virology. 1979;94:352–370. doi: 10.1016/0042-6822(79)90467-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmidt O.W., Cooney M.K., Kenny G.E. Plaque assay and improved yield of human coronaviruses in a human rhabdomyosarcoma cell line. J. Clin. Microbiol. 1979;9:722–728. doi: 10.1128/jcm.9.6.722-728.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schroeder B.A., Street J.E., Kalmakoff J., Bellamy A.R. Sequence relationship between the genome segments of human and animal rotavirus strains. J. Virol. 1982;43:379–385. doi: 10.1128/jvi.43.2.379-385.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., van der Zeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stohlman S.A., Weiner L.P. Chronic central nervous system demyelination in mice after JHM virus infection. Neurology. 1981;31:38–44. doi: 10.1212/wnl.31.1.38. [DOI] [PubMed] [Google Scholar]
  27. Tanaka R., Iwasaki Y., Koprowski H.J. Intracisternal virus-like particles in the brain of a multiple sclerosis patient. J. Neurol. Sci. 1976;28:121. doi: 10.1016/0022-510X(76)90053-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor J.M., Illmensee R., Sommers S. Efficient transcription of RNA into DNA by avian sarcoma virus polymerase. Biochim. Biophys. Acta. 1976;442:324–330. doi: 10.1016/0005-2787(76)90307-5. [DOI] [PubMed] [Google Scholar]
  29. Thomas P. Vol. 77. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose; pp. 5201–5205. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weiner L.P. Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus) Arch. Neurol. 1973;28:293–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  31. Weiss S.R., Leibowitz J.L. Comparison of the RNAs of murine and human coronaviruses. In: ter Meulen V., Siddell S.G., editors. Proceedings of the Symposium on the Biology and Biochemistry of Coronaviruses. Plenum; New York: 1981. pp. 245–260. [Google Scholar]
  32. Weiss S.R., Leibowitz J.L. Characterization of murine coronavirus RNA by hybridization with virus-specific cDNA probes. J. Gen. Virol. 1983;64:127–133. doi: 10.1099/0022-1317-64-1-127. [DOI] [PubMed] [Google Scholar]
  33. Weiss S.R., Varmus H.E., Bishop J.M. The size and genetic composition of virus-specific RNAs in the cytoplasm of cells producing avian sarcoma-leukosis viruses. Cell. 1977;12:983–992. doi: 10.1016/0092-8674(77)90163-5. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES