Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 12;183(2):479–486. doi: 10.1016/0042-6822(91)90977-J

Defective RNAs of clover yellow mosaic virus encode nonstructural/coat protein fusion products

KAndrew White , JB Brancroft , George A Mackie ∗,1
PMCID: PMC7130666  PMID: 1830181

Abstract

A small group of 1.2-kb RNAs present on polyribosoes from clover yellow mosaic virus (CYMV)-infected tissue contains sequences from the genomic RNA (gRNA) of CYMV and is encapsidated by CYMV coat protein. Some features of these RNAs suggest that they are similar to defective interfering (DI) RNAs, and would be the first to be reported for the potexvirus group. The prototype 1.2-kb RNA is 1172 nucleotides in length excluding a probable poly(A) tail and is composed of two noncontiguous regions corresponding to 757 nucleotides of the 5′ and 415 nucleotides of the 3′ terminal of CYMV's gRNA. The sequence of the prototype 1.2-kb RNA reveals that the two terminal gRNA regions present in this RNA encode a single open reading frame (ORF) joining the N-terminus of the 191-kDa nonstructural product and the C-terminus of the coat protein to form a 35-kDa 191-kDa/coat protein fusion product. The coding properties of this prototype RNA have been confirmed by translation in vitro of native and synthetic transcripts of the 1.2-kb RNAs, both of which direct the synthesis of the anticipated 35-kDa product which reacts with anti-CYMV antiserum. Three additional 1.2-kb RNA species, each of which contains a unique junction site, have been characterized. In all cases, a fusion ORF encoding a 191-kDa/coat protein fusion product is encoded on the RNA. The presence of a fusion ORF in all members of the 1.2-kb RNA species analyzed suggests that maintenance of this ORF may be important for the survival of this class of RNA within the plant. This coding strategy represents a novel property of plant virus defective RNAs.

Footnotes

Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under Accession Nos. M63511-M63514

References

  1. Argos P. A sequence motif in many polymerases. Nucleic Acids Res. 1988;16:9909–9916. doi: 10.1093/nar/16.21.9909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bancroft J.B., AbouHaidar M.G., Erickson J.W. The assembly of clover yellow mosaic virus and its protein. Virology. 1979;98:121–130. doi: 10.1016/0042-6822(79)90531-2. [DOI] [PubMed] [Google Scholar]
  3. Bendena W.G., AbouHaidar M.G., Mackie G.A. Synthesis in vitro of the coat protein of papaya mosaic virus. Virology. 1985;140:257–268. doi: 10.1016/0042-6822(85)90364-2. [DOI] [PubMed] [Google Scholar]
  4. Bendena W.G., Bancroft J.B., Mackie G.A. Molecular cloning of clover yellow mosaic virus RNA: Identification of coat protein coding sequences in vivo and in vitro. Virology. 1987;157:276–284. doi: 10.1016/0042-6822(87)90270-4. [DOI] [PubMed] [Google Scholar]
  5. Burgyan J., Grieco F., Russo M. A defective interfering RNA molecule in cymbidium ringspot virus infections. J. Gen. Virol. 1989;70:235–239. [Google Scholar]
  6. Erickson J.W., Bancroft J.B. The self-assembly of papaya mosaic virus. Virology. 1978;90:36–46. doi: 10.1016/0042-6822(78)90330-6. [DOI] [PubMed] [Google Scholar]
  7. Francki R.I.B. Plant virus satellites. Annu. Rev. Microbiol. 1985;39:151–174. doi: 10.1146/annurev.mi.39.100185.001055. [DOI] [PubMed] [Google Scholar]
  8. Hillman B.I., Carrington J.C., Morris T.J. A defective interfering RNA that contains a mosaic of a plant virus genome. Cell. 1987;51:427–433. doi: 10.1016/0092-8674(87)90638-6. [DOI] [PubMed] [Google Scholar]
  9. Jones R.W., Jackson A.O., Morris T.J. Defective-interfering RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology. 1990;176:539–545. doi: 10.1016/0042-6822(90)90024-l. [DOI] [PubMed] [Google Scholar]
  10. Knorr D.A., Mullin R.H., Hearne P.Q., Morris T.J. De novo generation of defective interfering RNAs of tomato bushy stunt virus by high multiplicity passage. Virology. 1991;181:193–202. doi: 10.1016/0042-6822(91)90484-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U.K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol. 1975;80:575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  12. Li X.H., Heaton L.A., Morris T.J., Simon A.E. Vol. 86. 1989. Turnip crinckle virus defective interfering RNAs intensity viral symptoms and are generated de novo; pp. 9173–9177. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mackie G.A. Structure of the DNA distal to the gene for ribosomal protein S20 in Escherichia coli: Presence of a strong terminator and an IS1 element. Nucleic Acids Res. 1986;14:6965–6981. doi: 10.1093/nar/14.17.6965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Makino S., Shieh C.-K., Soe L.H., Baker S.C., Lai M.M.C. Primary structure and translation of a defective interfering RNA of murine coronavirus. Virology. 1988;166:550–560. doi: 10.1016/0042-6822(88)90526-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McMaster G.K., Carmichael G.G. Vol. 74. 1977. Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange; pp. 4835–4838. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Melton D.A., Krieg P.A., Rebagliatti M.R., Maniatis T., Zinn K., Green M.R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984;12:7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morris T.J., Mullin R., Hearne P., Hillman B. De novo generation of tomato bushy stunt defective interfering RNAs. Phytopathology. 1988;78:1601. [Abstract] [Google Scholar]
  18. Palukaitis P. Detection and characterization of subgenomic RNAs in plant viruses. Methods Virol. 1984;7:259–317. [Google Scholar]
  19. Rubino L., Burgyan J., Grieco F., Russo M. Sequence analysis of cymbidium ringspot virus satellite and defective interfering RNAs. J. Gen. Virol. 1990;71:1655–1660. doi: 10.1099/0022-1317-71-8-1655. [DOI] [PubMed] [Google Scholar]
  20. Sit T.L., White K.A., Holy S., Padmanabhan U., Eweida M., Hiebert M., Mackie G.A., AbouHaidar M.G. Complete nucleotide sequence of clover yellow mosaic virus RNA. J. Gen. Virol. 1990;71:1913–1920. doi: 10.1099/0022-1317-71-9-1913. [DOI] [PubMed] [Google Scholar]
  21. Skryabin K.G., Morozov S.Yu., Kraev A.S., Rozanov M.N., Chernov B.K., Lukasheva L.I., Atabekov J.G. Conserved and variable elements in RNA genomes of potexviruses. FEBS Lett. 1988;240:33–40. doi: 10.1016/0014-5793(88)80335-1. [DOI] [PubMed] [Google Scholar]
  22. Vancanneyt G., Rosahl S., Willmitzer L. Translatability of a plant-mRNA strongly influences its accumulation in transgenic plants. Nucleic Acids Res. 1990;18:2917–2921. doi: 10.1093/nar/18.10.2917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. White K.A., Mackie G.A. Control and expression of 3′ open reading frames in clover yellow mosaic virus. Virology. 1990;179:576–584. doi: 10.1016/0042-6822(90)90124-a. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES