Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 23;137(2):347–357. doi: 10.1016/0042-6822(84)90227-7

In vivo and in vitro models of demyelinating disease IX. Progression of JHM virus infection in the central nervous system of the rat during overt and asymptomatic phases

O Sorensen 1, MB Coulter-Mackie 1, S Puchalski 1, S Dales 1
PMCID: PMC7130679  PMID: 6091333

Abstract

JHM virus, when inoculated into neonatal rats, can cause either a rapidly fatal acute encephalomyelitis or, after longer incubation periods, a paralytic disease. The cerebrospinal fluid (CSF) and serum anti-JHM virus IgG concentrations present in rats prior to onset of clinical symptoms or during the acute and paralytic phases of disease were compared. High CSF/serum ratios, indicative of local antibody production in the CNS, were noted only where disease was demonstrable suggesting that local antibody production accompanied the infection but did not prevent the neurological disease. Among animals in which neurologic symptoms had not become manifest, only those with elevated CSF/serum ratios were found to have histological CNS lesions. Immunofluorescent microscopy indicated that viral antigens were present in both glia and neurons. Antigen-positive cells were frequently present in histologically normal CNS tissue, while regions of necrosis were antigen negative. Testing for the presence of viral RNA with JHM cDNA probes revealed that the virus was rapidly disseminated throughout the CNS, presumably establishing centers of infection prior to the development of recognizable tissue damage. Viral RNA was also detected in the CNS following recovery from paralysis and as late as 5 months postinfection, where no disease occurred. These findings indicate that, although infection by JHM virus can spread rapidly throughout the CNS, formation of lesions during chronic disease is a slower process. The current data and previous observations suggest that JHM virus can remain in a latent state for periods of at least several months in rats without apparent neurologic disease despite the absence of any known provirus phase in the replicative strategy of coronaviruses.

References

  1. Alwine J.C., Kemp D.J., Stark G.R. Vol. 74. 1977. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes; pp. 5350–5354. (Proc. Natl. Acad Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnadottir T., Reunanen M., Salmi A. Intrathecal synthesis of virus antibodies in multiple sclerosis patients. Infect. Immun. 1982;38:399–407. doi: 10.1128/iai.38.2.399-407.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey T.O., Pappenheimer A.M., Cheever F.S., Daniels J.B. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. II. Pathology. J. Exp. Med. 1949;90:195–231. doi: 10.1084/jem.90.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheley S., Anderson R. A reproducible microanalytical method for the detection of specific RNA sequences by dot-blot hybridization. Anal. Biochem. 1984;137:15–19. doi: 10.1016/0003-2697(84)90339-7. [DOI] [PubMed] [Google Scholar]
  5. Coulter-Mackie M.B., Bradbury W.C., Dales S., Flintoff W.F., Morris V.L. In vivo and in vitro models of demyelinating diseases. IV. Isolation of Halle measles virus-specific RNA from BGMK cells and preparation of complementary DNA. Virology. 1980;102:327–338. doi: 10.1016/0042-6822(80)90100-2. [DOI] [PubMed] [Google Scholar]
  6. David G.S., Reisfeld R.A. Protein iodination with solid state lactoperoxidase. Biochemistry. 1974;13:1014–1021. doi: 10.1021/bi00702a028. [DOI] [PubMed] [Google Scholar]
  7. Denhardt D.T. A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 1966;23:641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  8. Fleming J.O., Ting J.Y.P., Stohlman S.A., Weiner L.P. Improvements in obtaining and characterizing mouse cerebrospinal fluid. Application to mouse hepatitis virus-induced encephalomyelitis. J. Neuroimmunol. 1983;4:129–140. doi: 10.1016/0165-5728(83)90017-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleury H.J.A., Sheppard R.D., Bornstein M.B., Raine C.S. Further ultrastructural observations of virus morphogenesis and myelin pathology in JHM virus encehalomyelitis. Neuropathol. Appl. Neurobiol. 1980;6:165–179. doi: 10.1111/j.1365-2990.1980.tb00288.x. [DOI] [PubMed] [Google Scholar]
  10. Griffin D.E. Immunoglobulins in the cerebrospinal fluid. Changes during acute viral encephalitis in mice. J. Immunol. 1981;126:27–31. [PubMed] [Google Scholar]
  11. Griffiths P.D., Berney S.I., Argent S., Heath R.B. Antibody against viruses in maternal and cord sera: Specific antibody is concentrated on the fetal side of the circulation. J Hyg. 1982;89:303–310. doi: 10.1017/s0022172400070832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirano N., Goto N., Ogawa T., Ono K., Murakawi T., Fujiwara K. Hydrocephalus in suckling rats infected intracerebrally with mouse hepatitis virus, MHV-A59. Microbiol. Immunol. 1980;24:825–834. doi: 10.1111/j.1348-0421.1980.tb02887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hovanec D.L., Flanagan T.D. Detection of antibodies to human coronavirus 229E and OC43 in the sera of multiple sclerosis patients and normal subjects. Infect. Immun. 1983;41:426–429. doi: 10.1128/iai.41.1.426-429.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knobler R.L., Dubois-Dalcq M., Haspel M.V., Claysmith A.P., Lampert P.W., Oldstone M.B.A. Selective localization of wild type and mutant mouse hepatitis virus (JHM strain) antigens in CNS tissue by fluorescence, light and electron microscopy. J. Neuroimmunol. 1981;1:81–92. doi: 10.1016/0165-5728(81)90010-2. [DOI] [PubMed] [Google Scholar]
  15. Knobler R.L., Haspel M.V., Oldstone M.B.A. Mouse hepatitis virus type 4 (JHM strain)-induced fatal central nervous system disease. I. Genetic control and the murine neuron as the susceptible site of disease. J. Exp. Med. 1981;153:832–843. doi: 10.1084/jem.153.4.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lampert P.W., Sims J.K., Kniazeff A.J. Mechanism of demyelination of JHM virus encephalomyelitis. Electron microscopic studies. Acta Neuropathol. 1973;24:76–85. doi: 10.1007/BF00691421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lecomte J., Tyrrell D.A.J. Isolation of antihaemagglutinin antibodies with an influenza A virus immunoadsorbent. J. Immunol. Methods. 1976;13:355–365. doi: 10.1016/0022-1759(76)90082-x. [DOI] [PubMed] [Google Scholar]
  18. Le Provost C., Virelizier J.L., Dupuy J.M. Immunopathology of mouse hepatitis virus type 3. III. Clinical and virologic observations of a persistent viral infection. J. Immunol. 1975;115:640–643. [PubMed] [Google Scholar]
  19. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  20. Macnaughton M.R. Occurrence and frequency of coronavirus infections in humans as determined by enzyme-linked immunosorbent assay. Infect. Immunol. 1982;38:419–423. doi: 10.1128/iai.38.2.419-423.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin J.R., Goudswaard J., Palsson P.A., Georgsson G., Peterson G., Klein J., Nathanson N. Cerebrospinal fluid immunoglobulins in sheep with Visna, a slow virus infection of the central nervous system. J. Neuroimmunol. 1982;3:139–148. doi: 10.1016/0165-5728(82)90047-9. [DOI] [PubMed] [Google Scholar]
  22. Nagashima K., Wege H., Meyermann R., Ter Meulen V. Coronavirus induced subacute demyelinating encephalomyelitis in rats: A morphological analysis. Acta Neuropathol. 1978;44:63–70. doi: 10.1007/BF00691641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagashima K., Wege H., Meyermann R., Ter Meulen V. Demyelinating encephalomyelitis induced by long-term coronavirus infection in rats. A preliminary report. Acta Neuropathol. 1979;45:205–213. doi: 10.1007/BF00702672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parnes J.R., Velan B., Felsenfeld A., Ramanathan L., Ferrini U., Appella E., Sidman J.G. Vol. 78. 1981. Mouse B2 microglobulin cDNA clones: A screening procedure for cDNA clones corresponding to rare mRNAs; pp. 2253–2257. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parsons L.M., Webb H.E. Virus titers and persistently raised white cell counts in cerebrospinal fluid in mice after peripheral infection with demyelinating semliki forest virus. Neuropath. Appl. Neurobiol. 1982;8:395–401. doi: 10.1111/j.1365-2990.1982.tb00307.x. [DOI] [PubMed] [Google Scholar]
  26. Peterson P.Y., Day E.D. Current perspectives of neuroimmunologic disease: Multiple sclerosis and experimental allergic encephalomyelitis. Clin. Immunol. Rev. 1982;1:581–697. [PubMed] [Google Scholar]
  27. Salmi A., Ziola B., Hovi T., Reunanen M. Antibodies to coronaviruses OC43 and 229E in multiple sclerosis patients. Neurology. 1982;32:292–295. doi: 10.1212/wnl.32.3.292. [DOI] [PubMed] [Google Scholar]
  28. Schliep G., Felgenhauer L. Serum-CSF protein gradients, the blood-CSF barrier and the local immune response. J. Neurol. 1978;218:77–96. doi: 10.1007/BF02402169. [DOI] [PubMed] [Google Scholar]
  29. Sorensen O., Beushausen S., Puchalski S., Cheley C., Anderson R., Coulter-Mackie M., Dales S. Molecular Biology and Pathogenesis of Coronaviruses. Plenum; New York: 1984. In vivo and in vitro models of demyelinating disease. VIII: Genetic, immunologic, and cellular influences on JHM virus infection in rats; pp. 279–298. [DOI] [PubMed] [Google Scholar]
  30. Sorensen O., Dugre R., Percy D., Dales S. In vivo and in vitro models of demyelinating disease: Endogenous factors influencing demyelinating disease caused by mouse hepatitis virus in rats and mice. Infect. Immun. 1982;37:1248–1260. doi: 10.1128/iai.37.3.1248-1260.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sorensen O., Percy D., Dales S. In vivo and in vitro models of demyelinating disease. III. JHM virus infection of rats. Arch. Neurol. 1980;37:478–484. doi: 10.1001/archneur.1980.00500570026003. [DOI] [PubMed] [Google Scholar]
  32. Strohman R.C., Moss P.S., Micore-Eastwood J., Spector D., Przybyla A., Peterson B. Messenger RNA for myosin polypeptides: Isolation from single myogenic cell culture. Cell. 1977;10:265–273. doi: 10.1016/0092-8674(77)90220-3. [DOI] [PubMed] [Google Scholar]
  33. Vartdal F., Vandvik B., Norrby E. Intrathecal synthesis of virus-specific oligoclonal IgG, IgA and IgM antibodies in a case of varicella zoster meningoencephalitis. J. Neural Sci. 1982;57:121–132. doi: 10.1016/0022-510x(82)90116-2. [DOI] [PubMed] [Google Scholar]
  34. Virelizier J.L., Dayan A.D., Allison A.C. Neuropathological effects of persistent infection of mice by mouse hepatitis virus. Infect Immun. 1975;12:1127–1140. doi: 10.1128/iai.12.5.1127-1140.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watanabe R., Wege H., Ter Meulen V. Adoptive transfer of EAE-like lesions from rats with coronavirus-induced demyelinating encephalomyelitis. Nature (London) 1983;305:150–153. doi: 10.1038/305150a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zeman W., Innes J.R.M. Academic Press; New York: 1963. Craigie's Neuroanatomy of the Rat. [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES