Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 23;77(2):772–782. doi: 10.1016/0042-6822(77)90498-6

Presence of infectious polyadenylated RNA in the coronavirus avian bronchitis virus

Gerald Schochetman 1,1, Roy H Stevens 1,2, Robert W Simpson 1,3
PMCID: PMC7130683  PMID: 193262

Abstract

Avian infectious bronchitis virus (IBV) was radiolabeled for its nucleic acid component by growth in deembryonated chicken eggs. Purified virions of IBV have a buoyant density in linear sucrose gradients of 1.17-1.18 g/cm3 and contain approximately 4% RNA by weight. The genomic ribonucleic acid of IBV shows the following characteristic: (1) It consists of one size class of single-stranded RNA having a molecular weight of 5.5-5.7 x 108 and a sedimentation coefficient of about 48 S; (2) no evidence for subunit structure is apparent since the RNA resolves as a single species with the same electrophoretic mobility in polyacrylamide gels before and after heat denaturation; (3) at least 20–30% of the RNA molecules extracted from purified virions contain sequences of polyadenylic acid of approximately 4 S size; (4) RNA obtained from detergent-disrupted virus particles by phenol-chloroform extraction is infectious for cultures of chick embryo fibroblasts, giving rise to progeny virus which is lethal for embryonated eggs. These findings, together with the observation that IBV virions do not exhibit detectable transcriptase activity, support the conclusion that the genome of this coronavirus acts directly as a messenger RNA in eukaryotic cells.

References

  1. Bader J.P., Steck T.L. Analysis of the ribonucleic acid of murine leukemia virus. J. Virol. 1969;4:454–459. doi: 10.1128/jvi.4.4.454-459.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baltimore D. Expression of animal virus genomes. Bacteriol. Rev. 1971;35:235–241. doi: 10.1128/br.35.3.235-241.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaudette F.R., Hudson C.B. Cultivation of the virus of infectious bronchitis. J. Amer. Vet. Med. Assoc. 1937;90:51–60. [Google Scholar]
  4. Bernkopf H. Vol. 72. 1949. Cultivation of influenza virus in the chorioallantoic membrane of de-embryoDated eggs; pp. 680–682. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  5. Bingham R.W. The polypeptide composition of avian infectious bronchitis virus. Arch. Virol. 1975;49:207–216. doi: 10.1007/BF01317539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bishop D.H.L., Roy P. Kinetics of RNA synthesized by vesicular stomatitis virus particles. J. Mol. Biol. 1971;57:512–527. doi: 10.1016/0022-2836(71)90106-9. [DOI] [PubMed] [Google Scholar]
  7. Bishop D.H.L., Roy P., Bean W.J., Jr, Simpson R.W. Transcription of the influenza ribonucleic acid genome by a virion polymerase. III. Completeness of the transcription process. J. Virol. 1972;10:689–697. doi: 10.1128/jvi.10.4.689-697.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bishop J.M., Koch G. Plaque assay for poliovirus and poliovirus specific RNAs. In: Habel K., Salzman N., editors. Fundamental Techniques in Virology. Academic Press; New York: 1969. pp. 131–145. [Google Scholar]
  9. Cheung K.R., Smith R.E., Smith M.P., Joklik W.K. Comparison of immature (rapid harvest) and mature Rous sarcoma virus particles. Virology. 1972;50:851–864. doi: 10.1016/0042-6822(72)90439-4. [DOI] [PubMed] [Google Scholar]
  10. Fenner F. The classification and nomenclature of viruses. Summary of results of meetings of the International Committee on Taxonomy of Viruses in Madrid, September, 1975. Virology. 1976;71:371–378. doi: 10.1016/0042-6822(76)90364-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garwes D.J., Pocock D.H., Wijaszka T.M. Identification of heat-dissociable RNA complexes in two porcine coronaviruses. Nature (London) 1975;257:508–510. doi: 10.1038/257508a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gillespie D., Marshall S., Gallo R.C. RNA of RNA tumor viruses contains poly A. Nature New Biol. 1972;236:227–231. [Google Scholar]
  13. Hierholzer J.C., Palmer E.L., Whitfield S.G., Kaye H.S., Dowdle W.R. Protein composition of coronavirus OC 43. Virology. 1972;48:516–527. doi: 10.1016/0042-6822(72)90062-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnston R.E., Bosf H.R. Vol. 69. 1972. Correlation of messenger function with adenylate-rich segments in the genomes of single-stranded RNA viruses; pp. 1514–1516. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kapikian A.Z. The coronaviruses. Develop. Biol. Stand. 1975;28:42–64. [PubMed] [Google Scholar]
  16. Lee S.Y., Mendecki J., Brawerman G. Vol. 68. 1971. A polynucleotide segment rich in adenylic acid in the rapidly-labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells; pp. 1331–1335. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lieber M., Sherr C.J., Benveniste R.E., Todaro G.J. Biologic and immunologic properties of porcine type C viruses. Virology. 1975;66:616–619. doi: 10.1016/0042-6822(75)90234-2. [DOI] [PubMed] [Google Scholar]
  18. Matthews R.E.F. A classification of virus groups based on the size of the particle in relation to genome size. J. Gen. Virol. 1975;27:135–149. doi: 10.1099/0022-1317-27-2-135. [DOI] [PubMed] [Google Scholar]
  19. McIntosh K. Coronaviruses: A comparative review. Curr. Top. Microbiol. Immunol. 1974;63:85–129. [Google Scholar]
  20. Nuss D.L., Oppermann H., Koch G. Vol. 72. 1975. Selective blockage of initiation of host protein synthesis in RNA-virus-infected cells; pp. 1258–1262. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perry R.P., LaTorre J., Kelley D.E., Greenberg J.R. On the lability of poly(A) sequences during the extraction of messenger RNA from polyribosomes. Biochim. Biophys. Acta. 1972;262:220–226. doi: 10.1016/0005-2787(72)90236-5. [DOI] [PubMed] [Google Scholar]
  22. Perry R.P., Greenberg J.R., Kelley D.E., LaTorre J., Schochetman G. Gene Expression and Its Regulation. Plenum Press; New York: 1973. Messenger RNA: Its origin and fate in mammalian cells; p. 149. [DOI] [PubMed] [Google Scholar]
  23. Porter A., Carey N., Fellner P. Presence of a large poly[rC] tract within the RNA of encephalomyocarditis virus. Nature (London) 1974;248:675. doi: 10.1038/248675a0. [DOI] [PubMed] [Google Scholar]
  24. Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Amer. J. Hyg. 1938;27:493–497. [Google Scholar]
  25. Roy P., Repik P., Hefti E., Bishop D.H.L. Complementary RNA species isolated from vesicular stomatitis (HR strain) defective virions. J. Virol. 1973;11:915–925. doi: 10.1128/jvi.11.6.915-925.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Saborio J.L., Pong S.S., Koch G. Selective inhibition of initiation of protein synthesis in mammalian cells. J. Mol. Biol. 1974;85:195–211. doi: 10.1016/0022-2836(74)90360-x. [DOI] [PubMed] [Google Scholar]
  27. Sheldon R., Jurak C., Kates J. Vol. 69. 1972. Detection of polvadenylic acid sequences in viral and eukaryotic RNA; pp. 417–422. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simpson R.W., Groupé V. Temperature of incubation as a critical factor in the behavior of avian bronchitis virus in chicken embryos. Virology. 1959;8:456–469. doi: 10.1016/0042-6822(59)90048-0. [DOI] [PubMed] [Google Scholar]
  29. Simpson R.W., Hirst G.K. Genetic recombination among influenza viruses. I. Cross reactivation of plaque-forming capacity as a method for selecting recombinants from the progeny of crosses between influenza A strains. Virology. 1961;15:436–451. doi: 10.1016/0042-6822(61)90111-8. [DOI] [PubMed] [Google Scholar]
  30. Spector D.H., Villa-komaroff L., Baltimore D. Studies on functions of polyadenylic acid on poliovirus RNA. Cell. 1975;6:41–44. doi: 10.1016/0092-8674(75)90071-9. [DOI] [PubMed] [Google Scholar]
  31. Spirin A.S. Some problems concerning the macromolecular structure of ribonucleic acids. Progr. Nucleic Acid Res. Mol. Biol. 1962;1:301–345. [Google Scholar]
  32. Tannock G.A. The nucleic acid of infectious bronchitis virus. Arch. Gesamte Virusforch. 1973;43:259–271. doi: 10.1007/BF01250421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tyrrell D.A., Almeida J.D., Berry D.M., Cunningham C.H., Hamre D., Hofstad M.S., Mallucci L., McIntosh K. Coronaviruses. Nature (London) 1968;220:650. [Google Scholar]
  34. Tyrrell D.A., Almeida J.F., Cunningham C.H., Dowdle W.R., Hofstad M.S., McIntosh K., Tajima M., Zakstelskaya L.Y.A., Easterday B.C., Kapikian A., Bingham R.W. Coronaviridae. Intervirology. 1975;5:76–82. doi: 10.1159/000149883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watkins H., Reeve P., Alexander D.J. The ribonucleic acid of infectious bronchitis virus. Arch. Virol. 1975;47:279–286. doi: 10.1007/BF01317815. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES