Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jul 22;183(1):351–365. doi: 10.1016/0042-6822(91)90148-5

Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein

Si-Yi Chen 1, Yumiko Matsuoka 1,1, Richard W Compans 1,2
PMCID: PMC7130718  PMID: 1905078

Abstract

The glycoproteins of bunyaviruses accumulate in membranes of the Golgi complex, where virus maturation occurs by budding. In this study we have constructed a series of full length or truncated mutants of the G2 glycoprotein of Punta Toro virus (PTV), a member of the Phlebovirus genus of the Bunyaviridae, and investigated their transport properties. The results indicate that the hydrophobic domain preceding the G2 glycoprotein can function as a translocational signal peptide, and that the hydrophobic domain near the C-terminus serves as a membrane anchor. A G2 glycoprotein construct with an extra hydrophobic sequence derived from the N-terminal NSM region was stably retained in the ER, and was unable to be transported to the Golgi complex. The full-length G2 glycoprotein, when expressed on its own, was transported out of the ER and expressed on the cell surface, whereas the G1 and G2 proteins when expressed together are retained in the Golgi complex. A truncated anchor-minus form of the G2 glycoprotein was found to be secreted into the culture medium, but was retained in the Golgi complex when coexpressed with the G1 glycoprotein. These results indicate that the G2 membrane glycoprotein is a class I membrane protein which does not contain a signal sufficient for Golgi retention, and suggest that its Golgi localization is a result of association with the G1 glycoprotein.

References

  1. Arikawa I., Lapenotiere H.F., Iacono-Connors L., Wang M., Schmaljohn C.S. Coding properties of the S and M genome segments of Sapporo rat virus: Comparison to other causative agents of hemorrhagic fever with renal Syndrome. Virology. 1990;176:114–125. doi: 10.1016/0042-6822(90)90236-k. [DOI] [PubMed] [Google Scholar]
  2. Bishop D.H.L. Bunyaviridae. In: Fields B.N., editor. Virology. Raven; New York: 1990. pp. 1155–1174. [Google Scholar]
  3. Bole D.G., Hendershot L.M., Kearney J.F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and Secreting hybridomas. J. Cell Biol. 1986;102:1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression of β-galactosidase provides visual Screening of recombinant virus plaques. Mol. Cell. Biol. 1985;5:3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen S.-Y., Matsuoka Y., Compans R.W. Assembly and polarized release of Punta Toro virus and effects of Brefeldin A. J. Virol. 1991;65:1427–1439. doi: 10.1128/jvi.65.3.1427-1439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colley K.J., Lee E.U., Adler B., Browne J.K., Paulson J.C. Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal Signal anchor with a Signal peptide. J. Biol. Chem. 1989;264:17,619–17,622. [PubMed] [Google Scholar]
  7. Copeland C.S., Zimmer K.-P., Wagner K.R., Healey G.A., Mellman I., Helenius A. Folding, trimerization, and transport are Sequential events in the biogenesis of influenza virus hemagglutinin. Cell. 1988;53:197–209. doi: 10.1016/0092-8674(88)90381-9. [DOI] [PubMed] [Google Scholar]
  8. Dahms N.M., Lobel P., Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J. Biol. Chem. 1989;264:12,115–12,118. [PubMed] [Google Scholar]
  9. Doms R.W., Ruusala A., Machamer C., Helenius J., Helenius A., Rose J.K. Differential effects of mutation in three domains on folding, quaternary Structure, and intracellular transport of vesicular stomatitis virus G protein. J. Cell. Biol. 1988;107:89–99. doi: 10.1083/jcb.107.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elliott E.M. Molecular biology of the Bunyaviridae. J. Gen. Virol. 1990;71:501–522. doi: 10.1099/0022-1317-71-3-501. [DOI] [PubMed] [Google Scholar]
  11. Eshita Y., Ericson B., Romanowski V., Bishop D.H.L. Analysis of the mRNA transcription processed of snowshoe hare bunyavirus S and mRNA species. J. Virol. 1985;55:681–689. doi: 10.1128/jvi.55.3.681-689.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuerst T.R., Niles E.G., Studier F.W., Moss B. Vol. 83. 1986. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes T7 RNA polymerase; pp. 8122–8126. (Proc. Natl. Aced. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gahmberg N., Kuismanen E., Keranen S., Pettersson R.F. Uukuniemi virus glycoproteins accumulate in and cause morphological changes of the Golgi complex in the absence of virus maturation. J. Virol. 1986;57:899–906. doi: 10.1128/jvi.57.3.899-906.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garoff H., Frishauf A.-M., Simon K., Lehrach H., Delius H. Nucleotide Sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature (London) 1980;288:236–241. doi: 10.1038/288236a0. [DOI] [PubMed] [Google Scholar]
  15. Gething M.-I., McCammon M., Sambrook I. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986;46:939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  16. Gething M.-J., Sambrook J. Construction of influenza haemagglutinin genes that code for intracellular and Secreted forms of the protein. Nature (London) 1982;300:598–603. doi: 10.1038/300598a0. [DOI] [PubMed] [Google Scholar]
  17. Graham F.L., Van Der Eb. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  18. Hashimoto K., Erdei S., Keranen S., Sarate J., Kaariainen L. Evidence for a Separate Signal sequence for the carboxy terminal envelope glycoprotein E 1 of Semliki Forest virus. J. Virol. 1981;38:34–40. doi: 10.1128/jvi.38.1.34-40.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ihara T., Smith J., Dalrymple J.M., Bishop D.H.L. Complete sequences of the glycoproteins and M RNA of Punta Toro phlebovirus compared to those of Rift Valley fever virus. Virology. 1985;144:246–253. doi: 10.1016/0042-6822(85)90321-6. [DOI] [PubMed] [Google Scholar]
  20. Jackson M.R., Nilsson T., Peterson P.A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990;9:3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuroki K., Russnak R., Ganem D. Novel N-terminal amino acid Sequence required for retention of a hepatitis B virus glycoprotein in the endoplasmic reticulum. Mol. Cell. Biol. 1989;9:4459–4466. doi: 10.1128/mcb.9.10.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klausner R.D. Sorting and traffic in the central vacuolar system. Cell. 1989;57:703–706. doi: 10.1016/0092-8674(89)90783-6. [DOI] [PubMed] [Google Scholar]
  23. Kornfeld S. Lysosomal enzyme targeting. Biochem. Soc. Trans. 1990;18:367–374. doi: 10.1042/bst0180367. [DOI] [PubMed] [Google Scholar]
  24. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  25. Kuismanen E., Hedman K., Saraste J., Pettersson R.F. Uukuniemi virus maturation: Accumulation of virus particles and viral antigens in the Golgi complex. Mol. Cell. Biol. 1982;2:1444–1458. doi: 10.1128/mcb.2.11.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kuismanen E. Posttranslational processing of Uukuniemi virus glycoprotein G1 and G2. J. Virol. 1984;51:806–812. doi: 10.1128/jvi.51.3.806-812.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laemmli U.K. Cleavage of the Structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Leary K., Blair C.D. Sequential events in the morphogenesis of Japanese encephalitis virus. J. Ultrastruct Res. 1980;72:123–129. doi: 10.1016/s0022-5320(80)90050-7. [DOI] [PubMed] [Google Scholar]
  29. Liljestrom P., Garoff H. Internally located cleavable Signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J. Virol. 1991;65:147–154. doi: 10.1128/jvi.65.1.147-154.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lippincott-Schwartz J., Yuan L.C., Bonifacino J.S., Klausner R.D. Rapid redistribution of Golgi proteins into the ER in cells treated with Brefeldin A: Evidence for membrane cycling from Golgi to ER. Cell. 1989;56:801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus El glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Madoff D.H., Lenard J. A membrane glycoprotein that accumulates intracellularly: cellular processing of the large glycoprotein of LaCrosse virus. Cell. 1982;28:821–829. doi: 10.1016/0092-8674(82)90061-7. [DOI] [PubMed] [Google Scholar]
  33. Maniatis T., Fritsch E.R., Sambrook I. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1986. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  34. Matsuoka Y., Ihara T., Bishop D.H.J., Compans R.W. Intracellular accumulation of Punta Toro virus glycoproteins expressed from cloned cDNA. Virology. 1988;167:251–260. doi: 10.1016/0042-6822(88)90075-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Melancon P., Garoff H. Reinitiation of translocation in the Semliki Forest virus Structural polyprotein: identification of the signal for the E1 glycoprotein. EMBO J. 1986;5:1551–1560. doi: 10.1002/j.1460-2075.1986.tb04396.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Munro S., Pelham H.R.B. A C-terminal Signal prevents Secretion of luminal ER proteins. Cell. 1987;48:899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  37. Murphy F.A., Harrison A.K., Whitfield S.G. Bunyaviridae: Morphologic and morphogenetic similarities of Bunyamwera serologic supergroup viruses and Several other arthropodborne viruses. Intervirology. 1973;1:297–316. doi: 10.1159/000148858. [DOI] [PubMed] [Google Scholar]
  38. Nilsson T., Jackson M., Peterson P.A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell. 1989;58:707–718. doi: 10.1016/0092-8674(89)90105-0. [DOI] [PubMed] [Google Scholar]
  39. Pattnaik A.K., Wertz G.M. Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J. Virol. 1990;64:2948–2957. doi: 10.1128/jvi.64.6.2948-2957.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Paulson J.C., Colley K. Glycosyltransferases. J. Biol. Chem. 1989;264:17,615–17,618. [PubMed] [Google Scholar]
  41. Pelham H.R.B. Evidence that luminal ER proteins are Sorted from secreted proteins in a post-ER compartment. EMBO J. 1988;7:913–918. doi: 10.1002/j.1460-2075.1988.tb02896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pensiero M.N., Jennings G.B., Schmauohn C.S., Hay J. Expression of the Hantaan virus M genome segment by using a vaccinia virus recombinant. J. Virol. 1988;62:696–702. doi: 10.1128/jvi.62.3.696-702.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Persson R., Pettersson R.F. Formation and intracellular transport of a heterodimeric viral spike protein complex. J. Cell Biol. 1991;112:257–266. doi: 10.1083/jcb.112.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Petterson R.F., Gahmberg N., Kuismanen E., Kaariainen L., Ronnholm R., Saraste I. Bunyavirus membrane glycoproteins as models for Golgi-specific proteins. Mod. Cell Biol. 1988;6:65–96. [Google Scholar]
  45. Poruchynsky M.S., Tyndall C., Both G.W., Sato F., Bellamy A.R., Atkinson P.H. Deletion into an NH2 terminal hydrophobic domain result in secretion of rotavirus VP7, a resident endoplasmic reticulum membrane glycoprotein. J. Cell Biol. 1985;101:2199–2209. doi: 10.1083/jcb.101.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rice C.M., Strauss I.H. Vol. 78. 1981. Nucleotide sequence of the 26S mRNA of sindbis virus and deduced sequences of the encoded virus structural proteins; pp. 2062–2066. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ronnholm R., Pettersson R.F. Complete nucleotide sequence of the mRNA segment of Uukuniemi virus coding the membrane glycoproteins G1 and G2. Virology. 1987;160:191–202. doi: 10.1016/0042-6822(87)90060-2. [DOI] [PubMed] [Google Scholar]
  48. Rose J.K., Dom R.W. Regulation of protein export from the endoplasmic reticulum. Annu. Rev. Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  49. Rose J.K., Welch W.I., Sefton B.M., Esch F.S., Ling N. Vol. 77. 1980. Vesicular stomatitis virus glycoprotein is anchored in viral membrane by a hydrophobic domain near the COOH terminus; pp. 3884–3888. (Proc. Nad. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rothman I.E. Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack. Cell. 1987;50:521–522. doi: 10.1016/0092-8674(87)90024-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  52. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schmauohn C.S., Patterson J.L. Replication of Bunyaviridae. In: Fields B.N., editor. Virology. Raven; New York: 1990. pp. 1175–1194. [Google Scholar]
  54. Schmauohn C.S., Schmauohn A.L., Dalrymple J.M. Hantaan virus mRNA: Coding strategy, nucleotide sequence, and gene order. Virology. 1987;157:31–39. doi: 10.1016/0042-6822(87)90310-2. [DOI] [PubMed] [Google Scholar]
  55. Sekikwa K., Lai C.J. Vol. 80. 1983. Defects in functional expression of an influenza virus hemagglutinin lacking the signal peptide sequences; pp. 3563–3567. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shaper N.L., Hollis G.F., Douglas J.G., Kirsch I.R., Shaper J.H. Characterization of the full length cDNA for murine β-1,4-glycosyltransferase. J. Biol. Chem. 1988;263:10,420–10,428. [PubMed] [Google Scholar]
  57. Smith I.F., Pifat D.Y. Morphogenesis of sandfly fever viruses (Bunyaviridae family) Virology. 1982;121:61–81. doi: 10.1016/0042-6822(82)90118-0. [DOI] [PubMed] [Google Scholar]
  58. Stirzaker S.C., Both G.W. The signal peptide of the rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell. 1989;56:741–747. doi: 10.1016/0092-8674(89)90677-6. [DOI] [PubMed] [Google Scholar]
  59. Suzich I.A., Collett M.S. Rift Valley fever virus M segment: Cell-free transcription and translation of virus-complementary RNA. Virology. 1988;164:478–486. doi: 10.1016/0042-6822(88)90562-4. [DOI] [PubMed] [Google Scholar]
  60. Tooze J., Tooze S.A. Infection of AtT20 murine pituitary tumor cells by mouse hepatitis virus strain A59: virus budding is restricted to the Golgi region. J. Cell Biol. 1985;33:281–293. [PubMed] [Google Scholar]
  61. von Heijne G. How signal sequences maintain cleavage specificity. J. Mol. Biol. 1984;173:243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]
  62. Wasmoen T.L., Kaleach L.T., Collett M.S. Rift Valley fever M segment: Cellular localization of M segment-encoded proteins. Virology. 1988;166:275–280. doi: 10.1016/0042-6822(88)90174-2. [DOI] [PubMed] [Google Scholar]
  63. Weinstein J., Lee E.U., McEntee K., Lai P.H., Paulson J.C. Primary structural of β-galactoside α2,6-sialyltransferase. J. Biol. Chem. 1987;262:17,735–17,743. [PubMed] [Google Scholar]
  64. Wieland F.T., Gleason M.L., Serafini T.A., Rothman J.E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987;50:289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES