Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 9;167(1):251–260. doi: 10.1016/0042-6822(88)90075-X

Intracellular accumulation of punta toro virus glycoproteins expressed from cloned cDNA

Yumiko Matsuoka , Takeshi Ihara , David HL Bishop , Richard W Compans ∗,1
PMCID: PMC7130723  PMID: 3142146

Abstract

The Punta Toro virus (PTV) middle size (M) RNA encodes two glycoproteins, G1 and G2, and possibly a nonstructural protein, NSM. A partial cDNA clone of the M segment which contains G1 and G2 glycoprotein coding sequences but lacks most of the NSM sequences was inserted into the genome of vaccinia virus under the control of an early vaccinia promoter. Cells infected with the recombinant virus were found to synthesize two polypeptides with molecular weights of 65,000 (G1) and 55,000 (G2) that reacted specifically with antibody against PTV. Studies using indirect immunofluorescence microscopy revealed that these proteins accumulated intracellularly in the perinuclear region. The results of endoglycosidase H digestion of these glycoproteins suggested that both G1 and G2 glycoproteins were transported from the RER to the Golgi complex. These proteins were not chased out from the Golgi region during a 6-hr incubation in the presence of cycloheximide. Surface immune precipitation and 125I-protein A binding assays also demonstrated that the majority of the G1 and G2 glycoproteins are retained intracellularly. These results indicate that the PTV glycoproteins contain the necessary information for retention in the Golgi apparatus.

References

  1. Altenburg B.C., Graham D.Y., Estes M.K. Ultrastructural study of rotavirus replication in cultured cells. J. Gen. Virol. 1980;46:75–85. doi: 10.1099/0022-1317-46-1-75. [DOI] [PubMed] [Google Scholar]
  2. Bishop D.H.L., Calisher C.H., Casals J., Chumakov M.P., Gaidamovich S.Y., Hannoun C., Lvov D.K., Marshall I.D., Okerblom N., Pettersson R.F., Porterfield J.S., Russell P.K., Shope R.E., Westaway E.G. Bunyaviridae. Intervirology. 1980;14:125–143. doi: 10.1159/000149174. [DOI] [PubMed] [Google Scholar]
  3. Bishop D.H.L., Gould K.G., Akashi H., Clerx-Van Haaster C.M. The complete sequence and coding content of snowshoe hare bunyavirus small (S) viral RNA species. Nucleic Acids Res. 1982;10:3703–3713. doi: 10.1093/nar/10.12.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bishop D.H.L., Shope R.E. Bunyaviridae. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 14. Plenum; New York: 1979. pp. 1–156. (Comprehensive Virology). [Google Scholar]
  5. Bouloy M., Vialat P., Girard M., Pardigon N. A transcript from the S segment of the Germiston bunyavirus is uncapped and codes for the nucleoprotein and a nonstructural protein. J. Virol. 1984;49:717–723. doi: 10.1128/jvi.49.3.717-723.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cabradilla C.D., Holloway B.P., Obueski J.F. Molecular cloning and sequencing of the La Crosse virus S RNA. Virology. 1983;128:463–468. doi: 10.1016/0042-6822(83)90271-4. [DOI] [PubMed] [Google Scholar]
  7. Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 1985;5:3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collett M.S., Purichio A.F., Keegan K., Frazier S., Hays W., Anderson D.K., Parker M.D., Schmaliohn C., Schmidt J., Dalrymple I.M. Complete nucleotide sequence of the MRNA segment of Rift Valley fever virus. Virology. 1985;144:228–245. doi: 10.1016/0042-6822(85)90320-4. [DOI] [PubMed] [Google Scholar]
  9. Dubois-Dalcq M.E., Doller E.W., Haspel M.V., Holmes K.V. Cell tropism and expression of mouse hepatitis virus (MHV) in mouse spinal cord cultures. Virology. 1982;119:317–331. doi: 10.1016/0042-6822(82)90092-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eshita Y., Bishop D.H.L. The complete sequence of the M RNA of snowshoe hare bunyavirus reveals the presence of internal hydrophobic domains in the viral glycoprotein. Virology. 1984;137:227–240. doi: 10.1016/0042-6822(84)90215-0. [DOI] [PubMed] [Google Scholar]
  11. Fagerland J.A., Pohleuz I.F.L., Woode G.N. A morphological study of the replication of Breda virus (proposed family Toroviridae) in bovine intestinal cells. J. Gen. Virol. 1986;67:1294–1304. doi: 10.1099/0022-1317-67-7-1293. [DOI] [PubMed] [Google Scholar]
  12. Fuller F., Bhown A.S., Bishop D.H.L. Bunyavirus nucleoprotein, N, and a non-structural protein, NS, are coded by overlapping reading frames in the S RNA. J. Gen. Virol. 1983;64:1705–1714. doi: 10.1099/0022-1317-64-8-1705. [DOI] [PubMed] [Google Scholar]
  13. Gahmberg N., Kuismanen E., Keranen S., Pettersson R.F. Uukuniemi virus glycoproteins accumulate in and cause morphological changes of the Golgi complex in the absence of virus maturation. J. Viol. 1986;57:899–906. doi: 10.1128/jvi.57.3.899-906.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graham F.L., Van Der E A.J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  15. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycoprotein of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ihara T., Akashi H., Bishop D.H.L. Novel coding strategy (ambisense genomic RNA) revealed by sequence analyses of Punta Toro phlebovirus S RNA. Virology. 1984;136:293–306. doi: 10.1016/0042-6822(84)90166-1. [DOI] [PubMed] [Google Scholar]
  17. Ihara T., Smith J., Dalrymple J.M., Bishop D.H.L. Complete sequence of the glycoproteins and M RNA of Punta Toro phlebovirus compared to those of Rift Valley fever virus. Virology. 1985;144:246–259. doi: 10.1016/0042-6822(85)90321-6. [DOI] [PubMed] [Google Scholar]
  18. Kakach L.T., Wasmoen T.L., Collett M.S. Rift Valley fever virus M segment: Use of recombinant vaccinia virus to study Phlebovirus gene expression. J. Virol. 1988;62:826–833. doi: 10.1128/jvi.62.3.826-833.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuismanen E., Bang B., Hurme M., Pettersson R.F. Uukuniemi virus maturation: immunofluorescence microscopy with monoclonal glycoprotein-specific antibodies. J. Virol. 1984;51:137–146. doi: 10.1128/jvi.51.1.137-146.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuismanen E., Hedman K., Saraste J., Pettersson R.F. Uukuniemi virus maturation: Accumulation of virus particles and viral antigens in the Golgi complex. Mol. Cell. Biol. 1982;2:1444–1458. doi: 10.1128/mcb.2.11.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U.K. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Leary K., Blair C.D. Sequential events in the morphogenesis of Japanese encephalitis virus. J. Ultrastruct. Res. 1980;72:123–129. doi: 10.1016/s0022-5320(80)90050-7. [DOI] [PubMed] [Google Scholar]
  23. Lees J.F., Pringle C.R., Elliott R.M. Nucleotide sequence of the bunyamwera virus M RNA segment: Conservation of structural features in the bunyavirus glycoprotein gene product. Virology. 1986;148:1–14. doi: 10.1016/0042-6822(86)90398-3. [DOI] [PubMed] [Google Scholar]
  24. Machamer C.E., Rose I.K. A specific transmembrane domain of a coronavirus El glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maddon P.J., Dalgleish A.G., McDougal J.S., Clapham P.R., Weiss R.A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  26. Madoff D.H., Lenard J. A membrane glycoprotein that accumulates intracellularly: Cellular processing of the large glycoprotein of LaCrosse virus. Cell. 1982;28:821–829. doi: 10.1016/0092-8674(82)90061-7. [DOI] [PubMed] [Google Scholar]
  27. Maniatis T., Fritsch E.F., Sumbrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  28. Murphy F.A., Harrison A.K., Whitfield S.G. Bunyaviridae: Morphologic and morphogenetic similarities of bunyamwera serologic supergroup viruses and several other arthropodborne viruses. Intervirology. 1973;1:297–316. doi: 10.1159/000148858. [DOI] [PubMed] [Google Scholar]
  29. Pensiero M.N., Jennings G.B., Schmauohn C.S., Hay J. Expression of Hantaan virus M genome segment by using vaccinia virus recombinant. J. Virol. 1988;62:696–702. doi: 10.1128/jvi.62.3.696-702.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Petrie B.L., Greenberg H.B., Graham D.Y., Estes M.K. Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res. 1984;1:133–152. doi: 10.1016/0168-1702(84)90069-8. [DOI] [PubMed] [Google Scholar]
  31. Ronnholm R., Pettersson R.F. Complete nucleotide sequence of the MRNA segment of Uukuniemi virus encoding the membrane glycoproteins G1 and G2. Virology. 1987;160:191–202. doi: 10.1016/0042-6822(87)90060-2. [DOI] [PubMed] [Google Scholar]
  32. Roth M.G., Compans R.W. Antibody-resistant spread of vesicular stomatitis virus infection in cell lines of epithelial origin. J. Virol. 1980;35:547–550. doi: 10.1128/jvi.35.2.547-550.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rottier P.J.M., Rose J.K. Coronavirus E1 glycoprotein expressed from cloned cDNA localize in the Golgi region. J. Virol. 1987;61:2042–2045. doi: 10.1128/jvi.61.6.2042-2045.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schmauohn C.S., Schmauohn A.L., Dalrymple J.M. Hantaan virus M RNA: Coding strategy, nucleotide sequence, and gene order. Virology. 1987;157:31–39. doi: 10.1016/0042-6822(87)90310-2. [DOI] [PubMed] [Google Scholar]
  35. Smith G.L., Moss B. Infectious poxvirus have capacity for at least 25,000 base pairs of foreign DNA. Gene. 1983;25:21–28. doi: 10.1016/0378-1119(83)90163-4. [DOI] [PubMed] [Google Scholar]
  36. Smith J.F., Pifat D.Y. Morphogenesis of sandfly fever viruses (Bunyaviridae family) Virology. 1982;121:61–81. doi: 10.1016/0042-6822(82)90118-0. [DOI] [PubMed] [Google Scholar]
  37. Stephens E.B., Compans R.W., Earl P., Moss B. Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors. EMBO J. 1986;5:237–245. doi: 10.1002/j.1460-2075.1986.tb04204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Strous G.J.A.M., Lodish H.F. Intracellular transport of secretory and membrane proteins in hepatoma cells infected with vesicular stomatitis virus. Cell. 1980;22:709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
  39. Tooze J., Tooze S.A. Infection of AtT20 murine pituitary tumor cells by mouse hepatitis virus strain A59: Virus budding is restricted to the Golgi region. Eur. J. Cell Biol. 1985;37:203–212. [PubMed] [Google Scholar]
  40. Tooze J., Tooze S.A., Warren G. Replication of coronavirus MHV-A59 in Sac (−) cells: Determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 1984;33:281–293. [PubMed] [Google Scholar]
  41. Ulmanen I.L., Seppala P., Pettersson R.F. In vitro translation of Uukuniemi virus-specific RNAs: Identification of a nonstructural protein and a precursor to the membrane glycoproteins. J. Virol. 1981;37:72–79. doi: 10.1128/jvi.37.1.72-79.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiss M., Horzinek M.C. Morphogenesis of Berne virus (proposed family Toroviridae) J. Gen. Virol. 1986;67:1305–1314. doi: 10.1099/0022-1317-67-7-1305. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES