Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 23;177(1):175–183. doi: 10.1016/0042-6822(90)90471-3

Post-translational processing of the glycoproteins of lymphocytic choriomeningitis virus

KE Wright 1,1, RC Spiro 1,2, JW Burns 1, MJ Buchmeier 1,3
PMCID: PMC7130728  PMID: 2141203

Abstract

Intracellular events in the synthesis, glycosylation, and transport of the lymphocytic choriomeningitis virus (LCMV) glycoproteins have been examined. We have shown by N-glycanase digestion that LCMV strain Arm-4 bears five oligosaccharides on GP-1 and two on GP-2. By pulse-chase labeling experiments in the presence of drugs which inhibit N-linked oligosaccharide addition and processing we demonstrate that addition of high mannose precursor oligosaccharides is necessary for transport and cleavage of the viral GP-C glycoprotein. Moreover, in the presence of tunicamycin which inhibits en bloc addition of these mannose-rich side chains, virus budding was substantially decreased and infectious virions were reduced by more than 1000-fold in the supernatant medium. Incubation in the presence of castantospermine, which permits addition of oligomannosyl-rich chains but blocks further processing, restored transport and cleavage of GP-C and maturation of virions. Finally, by temperature block experiments we have determined that maturation of GP-C oligosaccharides to an endoglycosidase H resistant form precedes cleavage to GP-1 and GP-2. The latter process is most likely to occur in the Golgi or post-Golgi compartment.

References

  1. Balch W.E., Keller K.S. ATP-coupled transport of vesicular stomatitis virus G protein: Functional boundaries of secretory compartments. J. Biol. Chem. 1986;261:14,690–14,696. [PubMed] [Google Scholar]
  2. Bosch J.V., Schwarz R.T. Processing of gPr92 env, the precursor of the glycoproteins of Rous sarcoma virus: Use of inhibitors of oligosaccharide trimming and glycoprotein transport. Virology. 1984;132:95–109. doi: 10.1016/0042-6822(84)90094-1. [DOI] [PubMed] [Google Scholar]
  3. Buchmeier M.J., Lewicki H.A., Tomori O., Oldstone M.B.A. Monoclonal antibodies to lymphocytic choriomeningitis and Pichinde viruses: Generation, characterization and cross-reactivity with other arenaviruses. Virology. 1981;113:73–85. doi: 10.1016/0042-6822(81)90137-9. [DOI] [PubMed] [Google Scholar]
  4. Buchmeier M.J., Oldstone M.B.A. Protein structure of lymphocytic choriomeningitis virus: Evidence for a cell-associated precursor of the viron glycopeptides. Virology. 1979;99:111–120. doi: 10.1016/0042-6822(79)90042-4. [DOI] [PubMed] [Google Scholar]
  5. Buchmeier M.J., Parekh B.S. Protein structure and expression among arenaviruses. Curr. Topics Microbiol. Immunol. 1987;133:41–57. doi: 10.1007/978-3-642-71683-6_4. [DOI] [PubMed] [Google Scholar]
  6. Buchmeier M.J., Southern P.J., Parekh B.S., Wooddell M.K., Oldstone M.B.A. Site-specific antibodies define a cleavage site conserved among arenavirus GP-C glycoproteins. J. Virol. 1987;61:982–985. doi: 10.1128/jvi.61.4.982-985.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buchmeier M.J., Welsh R.M., Dutko F.J., Oldstone M.B.A. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv. Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  8. Burke B., Matlin A.K., Bause E., Legler G., Peyrieras N., Pleogh H. Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins. EMBO J. 1984;3:551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chatterjee S., Bradac J., Hunter E. Effect of tunicamycin on cell fusion induced by Mason-Pfizer monkey virus. J. Virol. 1981;38:770–776. doi: 10.1128/jvi.38.2.770-776.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clegg J.A.C., Lloyd G. Structural and cell-associated proteins of Lassa virus. J. Gen. Virol. 1983;64:1127–1136. doi: 10.1099/0022-1317-64-5-1127. [DOI] [PubMed] [Google Scholar]
  11. Copeland C.S., Zimmer K-P., Wagner K.R., Healey G.A., Mellman I., Helenius A. Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin. Cell. 1988;53:197–209. doi: 10.1016/0092-8674(88)90381-9. [DOI] [PubMed] [Google Scholar]
  12. Elbein A.D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
  13. Elbein A.D., Legler G., Tlusty A., McDowell W., Schwarz R.T. The effect of deoxymannojirimycin on the processing of the influenza viral glycoproteins. Arch. Biochem. Biophys. 1984;235:579–588. doi: 10.1016/0003-9861(84)90232-7. [DOI] [PubMed] [Google Scholar]
  14. Franze-Fernandez M-T., Zetina C., Iapalucci S., Lucero M.A., Bouissou C., Lopez R., Rey O., Daheli M., Cohen G.N., Zakin M.M. Molecular structure and early events in the replication of Tacaribe arenavirus S RNA. Virus Res. 1987;7:309–324. doi: 10.1016/0168-1702(87)90045-1. [DOI] [PubMed] [Google Scholar]
  15. Gibson R., Leavitt R., Kornfeld S., Schlesinger S. Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell. 1978;13:671–679. doi: 10.1016/0092-8674(78)90217-9. [DOI] [PubMed] [Google Scholar]
  16. Gibson R., Schlesinger S., Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperaturesensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
  17. Giminez H.B., Boersma D.P., Compans R.W. Analysis of polypeptides in Tacaribe virus-infected cells. Virology. 1983;128:469–473. doi: 10.1016/0042-6822(83)90272-6. [DOI] [PubMed] [Google Scholar]
  18. Harnish D.G., Leung W.C., Rawls W.E. Characterization of polypeptides immunoprecipitible from Pichinde virus-infected BHK-21 cells. J. Virol. 1981;38:840–848. doi: 10.1128/jvi.38.3.840-848.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kawaoka Y., Naeve C.W., Webster R.G. Is virulence of H5N2 influenza virus in chickens associated with loss of carbohydrate from the hemagglutinin? Virology. 1984;139:303–316. doi: 10.1016/0042-6822(84)90376-3. [DOI] [PubMed] [Google Scholar]
  20. Klavinskis L.S., Notkins A.L., Oldstone M.B.A. Persistent infection of the thyroid gland: Alteration of thyroid function in the absence of tissue injury. Endocrinology. 1988;122:567–575. doi: 10.1210/endo-122-2-567. [DOI] [PubMed] [Google Scholar]
  21. Klenk H-D., Rott R., Orlich M., Blodorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lazarowitz S.G., Choppin P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440–454. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
  24. Leavitt R., Schlesinger S., Kornfeld S. Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses. J. Virol. 1977;21:375–385. doi: 10.1128/jvi.21.1.375-385.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matlin K., Simons K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell. 1983;34:233–243. doi: 10.1016/0092-8674(83)90154-x. [DOI] [PubMed] [Google Scholar]
  26. McCune J.M., Rabin L.B., Feinberg M.B., Lieberman M., Kosek J.C., Reyes G.R., Weissman I.L. Endoproteolytic cleavage of gpl60 is required for the activation of human immunodeficiency virus. Cell. 1988;53:55–67. doi: 10.1016/0092-8674(88)90487-4. [DOI] [PubMed] [Google Scholar]
  27. McDowell W., Romero P.A., Datema R., Schwarz R.T. Glucose trimming and mannose trimming affect different phases of the maturation of Sindbis virus in infected BHK cells. Virology. 1987;161:37–44. doi: 10.1016/0042-6822(87)90168-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morrison T., Ward L.J., Smerjian A. Intracellular processing of the Newcastle disease virus fusion glycoprotein. J. Virol. 1985;53:851–857. doi: 10.1128/jvi.53.3.851-857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mottet G., Portner A., Roux L. Drastic immunoreactivity changes between the immature and mature forms of the Sendai virus HN and F0 glycoproteins. J. Virol. 1986;59:132–141. doi: 10.1128/jvi.59.1.132-141.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nagai Y., Ogura H., Klenk H-D. Studies on the assembly of the envelope of Newcastle disease virus. Virology. 1976;69:523–538. doi: 10.1016/0042-6822(76)90482-7. [DOI] [PubMed] [Google Scholar]
  31. Nakamura K., Compans R. Effects of glucosamine, 2-deoxy-d-glucose and tunicamycin on glycosylation, sulfation and assembly of influenza glycoproteins. Virology. 1978;84:303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  32. Oldstone M.B.A., Buchmeier M.J. Restricted expression of viral glycoproteins in cells of persistently infected mice. Nature (London) 1982;300:360–362. doi: 10.1038/300360a0. [DOI] [PubMed] [Google Scholar]
  33. Oldstone M.B.A., Rodriguez M., Daughaday W.H., Lampert P.W. Viral perturbation of endocrine function: Disordered cell function leads to disturbed homeostasis and disease. Nature (London) 1984;307:278–281. doi: 10.1038/307278a0. [DOI] [PubMed] [Google Scholar]
  34. Padula P., de Martinez Segovia Z.M. Replication of Junin virus in the presence of tunicamycin. Intervirology. 1984;22:227–231. doi: 10.1159/000149555. [DOI] [PubMed] [Google Scholar]
  35. Parekh B.S., Buchmeier M.J. Proteins of lymphocytic choriomeningitis virus: Antigenic topography of the viral glycoproteins. Virology. 1986;153:168–178. doi: 10.1016/0042-6822(86)90020-6. [DOI] [PubMed] [Google Scholar]
  36. Pinter A., Honnen W.J., Li J.S. Studies with inhibitors of oligosaccharide processing indicate a functional role for complex sugars in the transport and proteolysis of Friend mink cell focus-inducing murine leukemia virus envelope proteins. Virology. 1984;136:196–210. doi: 10.1016/0042-6822(84)90259-9. [DOI] [PubMed] [Google Scholar]
  37. Polonoff E., Machida C.A., Kabat D.A. Glycosylatlon and intracellular transport of membrane glycoproteins encoded by murine leukemia viruses. J. Biol. Chem. 1982;257:14023–14028. [PubMed] [Google Scholar]
  38. Repp R., Tamura T., Boschek C.B., Wege H., Schwarz R.J., Niemann H. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of Coronavirus particles. J. Biol. Chem. 1985;260:15873–15879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Romero P.A., Datema R., Schwarz R.T. N-Methyl-1-deoxynojirimycin, a novel inhibitor of glycoprotein processing, and its effect on fowl plague virus maturation. Virology. 1983;130:238–242. doi: 10.1016/0042-6822(83)90133-2. [DOI] [PubMed] [Google Scholar]
  40. Salvato M.S., Shimomaye E.M. The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology. 1989;173:1–10. doi: 10.1016/0042-6822(89)90216-x. [DOI] [PubMed] [Google Scholar]
  41. Saraste J., Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984;38:535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
  42. Saraste J., Palade G.E., Farquar M.G. Vol. 83. 1986. Temperature sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells; pp. 6425–6429. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sato T.A., Kohama T., Sugiura A. Intracellular processing of measles virus fusion protein. Arch. Virol. 1988;98:39–50. doi: 10.1007/BF01321004. [DOI] [PubMed] [Google Scholar]
  44. Scheid A., Choppin P.W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  45. Scheid A., Choppin P.W. Protease activation mutants of Sendai virus: Activation of biological properties by specific proteases. Virology. 1976;69:269–277. doi: 10.1016/0042-6822(76)90213-0. [DOI] [PubMed] [Google Scholar]
  46. Schlesinger S., Malfer C., Schlesinger M.J. The formation of vesicular stomatitis virus (San Juan strain) becomes temperature sensitive when glucose residues are retained on the oligosaccharides of the glycoprotein. J. Biol. Chem. 1984;259:7597–7601. [PubMed] [Google Scholar]
  47. Schlesinger S., Koyama A.H., Malfer C., Gee S.L., Schlesinger M.J. The effects of inhibitors of glucosidase I on the formation of Sindbis virus. Virus Res. 1985;2:139–149. doi: 10.1016/0168-1702(85)90244-8. [DOI] [PubMed] [Google Scholar]
  48. van der Zeijst B.A.M., Bleumink N., Crawford L.V., Swyryd A., Stark G.R. Viral proteins and RNAs in BHK cells persistently infected by lymphocytic choriomeningitis virus. J. Virol. 1983;48:262–270. doi: 10.1128/jvi.48.1.262-270.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. van Grunen-Littel-van den Hurk A., Babiuk L.A. Effect of tunicamycin and monensin on biosynthesis, transport, and maturation of bovine herpesvirus type-1 glycoproteins. Virology. 1985;143:104–118. doi: 10.1016/0042-6822(85)90100-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Weber E.L., Buchmeier M.J. Fine mapping of a peptide sequence containing an antigenic site conserved among arenaviruses. Virology. 1988;164:30–38. doi: 10.1016/0042-6822(88)90616-2. [DOI] [PubMed] [Google Scholar]
  51. Welsh R.M., Buchmeier M.J. Protein analysis of defective interfering lymphocytic choriomeningitis virus and persistently infected cells. Virology. 1979;96:503–515. doi: 10.1016/0042-6822(79)90107-7. [DOI] [PubMed] [Google Scholar]
  52. Whitton J.L., Gebhard J.R., Lewicki H.A., Tishon A., Oldstone M.B.A. Molecular definition of a major cytotoxic Tlymphocyte epitope in the glycoprotein of lymphocytic choriomeningitis virus. J. Virol. 1988;62:687. doi: 10.1128/jvi.62.3.687-695.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wright K.E., Salvato M.S., Buchmeier M.J. Neutralizing epitopes of lymphocytic choriomeningitis virus are conformational and require both glycosylation and disulfide bonds for expression. Virology. 1989;171:417–426. doi: 10.1016/0042-6822(89)90610-7. [DOI] [PubMed] [Google Scholar]
  54. Yamada A., Takeuchi K., Hishiyama M. Intracellular processing of mumps virus glycoproteins. Virology. 1988;165:268–273. doi: 10.1016/0042-6822(88)90681-2. [DOI] [PubMed] [Google Scholar]
  55. Zinkernagel R.M., Doherty P.C. Immunologic surveillance against altered self components by sensitized T-lymphocytes in lymphocytic choriomeningitis. Nature (London) 1974;251:547–548. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]
  56. Zinkernagel R.M., Welsh R.M. H-2 compatibility requirement for virus specific T-cell mediated effector functions in vivo. I. Specificity of T-cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H-2K and H-2D. J. Immunol. 1976;117:1495–1502. [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES