Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;141(2):173–189. doi: 10.1016/0042-6822(85)90250-8

Modification of simian virus 40 large tumor antigen by glycosylation

Donald L Jarvis 1, Janet S Butel 1,1
PMCID: PMC7130735  PMID: 3002015

Abstract

The SV40-encoded transforming protein, large tumor antigen (T-ag), is multifunctional. Chemical modifications of the T-ag polypeptide may be important for its multifunctional capacity. T-ag is additionally modified by glycosylation. T-ag was metabolically labeled in SV40-infected cells with tritiated galactose or glucosamine, but not with mannose or fucose. The identity of glycosylated T-ag was established by immunoprecipitation with a variety of T-ag-specific antisera, including monoclonal antibodies. Incorporation of labeled sugar into T-ag was inhibited in the presence of excess unlabeled sugars, but not in the presence of excess unlabeled amino acids. Labeled monosaccharides could be preferentially removed from T-ag with a mixture of glycosidic enzymes. In addition, galactose was removed from purified T-ag by acid hydrolysis and identified as such by thin-layer chromatography. T-ag oligosaccharides were resistant to treatment with EndoH, and glycosylation was not inhibited by tunicamycin. Together, these data strongly suggest that T-ag is glycosylated. Several characteristics, including lack of mannose labeling, EndoH resistance, and tunicamycin resistance, suggest that T-ag is not an N-linked glycoprotein. Rather, these properties are more consistent with the identification of T-ag as an O-linked glycoprotein.

References

  1. Bradley M.K., Griffin J.D., Livingston D.M. Relationship of oligomerization to enzymatic and DNA-binding properties of the SV40 large T antigen. Cell. 1982;28:125–134. doi: 10.1016/0092-8674(82)90382-8. [DOI] [PubMed] [Google Scholar]
  2. Chandrasekaran K., Winterbourne D.J., Luborsky S.W., Mora P.T. Surface proteins of simian-virus-40-transformed cells. Int. J. Cancer. 1981;27:397–407. doi: 10.1002/ijc.2910270320. [DOI] [PubMed] [Google Scholar]
  3. Deppert W., Hanke K., Henning R. Simian virus 40 T-antigen-related cell surface antigen: Serological demonstration on simian virus 40-transformed monolayer cells in situ. J. Virol. 1980;35:505–518. doi: 10.1128/jvi.35.2.505-518.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dickson C., Atterwill M. Structure and processing of the mouse mammary tumor virus glycoprotein precursor Pr73env. J. Virol. 1980;35:349–361. doi: 10.1128/jvi.35.2.349-361.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dresler S., Ruta M., Murray M.J., Kabat D. Glycoprotein encoded by the Friend spleen focus-forming virus. J. Virol. 1979;30:564–575. doi: 10.1128/jvi.30.2.564-575.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fanning E., Nowak B., Burger C. Detection and characterization of multiple forms of simian virus 40 large T antigen. J. Virol. 1981;37:92–102. doi: 10.1128/jvi.37.1.92-102.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fanning E., Westphal K.-H., Brauer D., Corlin D. Subclasses of simian virus 40 large T antigen: Differential binding of two subclasses of T antigen from productively infected cells to viral and cellular DNA. EMBO J. 1982;1:1023–1028. doi: 10.1002/j.1460-2075.1982.tb01290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fiers W., Contreras R., Haegeman G., Rogiers R., Van De Voorde A., Van Heuverswyn H., Van Herreweghe J., Volckaert G., Ysebaert M. Complete nucleotide sequence of SV40 DNA. Nature (London) 1978;273:113–120. doi: 10.1038/273113a0. [DOI] [PubMed] [Google Scholar]
  9. Gal A.E. Separation and identification of monosaccharides from biological materials by thinlayer chromatography. Anal. Biochem. 1968;24:452–461. doi: 10.1016/0003-2697(68)90152-8. [DOI] [PubMed] [Google Scholar]
  10. Gidoni D., Scheller A., Barnet B., Hantzopoulos P., Oren M., Prives C. Different forms of simian virus 40 large tumor antigen varying in their affinities for DNA. J. Virol. 1982;42:456–466. doi: 10.1128/jvi.42.2.456-466.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldman N., Brown M., Khoury G. Modification of SV40 T antigen by poly-ADPribosylation. Cell. 1981;24:567–572. doi: 10.1016/0092-8674(81)90347-0. [DOI] [PubMed] [Google Scholar]
  12. Gurney E.G., Harrison R.O., Ferno J. Monoclonal antibodies against simian virus 40 T antigens: Evidence for distinct subclasses of large T antigen and for similarities among nonviral T antigens. J. Virol. 1980;34:752–763. doi: 10.1128/jvi.34.3.752-763.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harlow E., Crawford L.V., Pim D.C., Williamson N.M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 1981;39:861–869. doi: 10.1128/jvi.39.3.861-869.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hayman M.J., Ramsay G.M., Savin K., Kitchener G., Graf T., Beug H. Identification and characterization of the avian erythroblastosis virus erbB gene product as a membrane glycoprotein. Cell. 1983;32:579–588. doi: 10.1016/0092-8674(83)90477-4. [DOI] [PubMed] [Google Scholar]
  15. Henderson L.E., Oroszlan S., Konigsberg W. A micromethod for complete removal of dodecyl sulfate from proteins by ion-pair extraction. Anal. Biochem. 1979;93:153–157. [PubMed] [Google Scholar]
  16. Holmes K.V., Doller E.W., Sturman L.S. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hunt L.T., Dayhoff M.O. The occurrence in proteins of the tripeptides Asn-X-Ser and Asn-X-Thr and of bound carbohydrate. Biochem, Biophys. Res. Commun. 1970;39:757–765. doi: 10.1016/0006-291x(70)90270-6. [DOI] [PubMed] [Google Scholar]
  18. Jarvis D.L., Lanford R.E., Butel J.S. Structural comparisons of wild-type and nuclear transport-defective simian virus 40 large tumor antigens. Virology. 1984;134:168–176. doi: 10.1016/0042-6822(84)90282-4. [DOI] [PubMed] [Google Scholar]
  19. Kessler S.W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein A. J. Immunol. 1975;115:1617–1624. [PubMed] [Google Scholar]
  20. Khandjian E.W., Loche M., Darlix J.L., Cramer R., Türler H., Weil R. Vol. 79. 1982. Simian virus 40 large tumor antigen: A “RNA binding protein”? pp. 1139–1143. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klockmann U., Deppert W. Acylation: A new post-translational modification specific for plasma membrane-associated simian virus 40 large T-antigen. FEBS Lett. 1983;151:257–259. doi: 10.1016/0014-5793(83)80081-7. [DOI] [PubMed] [Google Scholar]
  22. Lane D.P., Hoeffler W.K. SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature (London) 1980;288:167–170. doi: 10.1038/288167a0. [DOI] [PubMed] [Google Scholar]
  23. Lanford R.E., Butel J.S. Antigenic relationship of SV40 early proteins to purified large T polypeptide. Virology. 1979;97:295–306. doi: 10.1016/0042-6822(79)90341-6. [DOI] [PubMed] [Google Scholar]
  24. Leavitt R., Schlesinger S., Kornfeld S. Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses. J. ViroL. 1977;21:375–385. doi: 10.1128/jvi.21.1.375-385.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lehninger A.L. Worth Publishers; New York: 1982. Principles of Biochemistry; pp. 397–460. [Google Scholar]
  26. Mahin D.T., Lofberg R.T. A simplified method of sample preparation for determination of tritium, carbon-14, or sulfur-35 in blood or tissue by liquid scintillation counting. Anal. Biochem. 1966;16:500–509. [Google Scholar]
  27. Martin R.G. The transformation of cell growth and transmogrification of DNA synthesis by simian virus 40. In: Klein G., Weinhouse S., editors. Vol. 34. Academic Press; New York: 1981. pp. 1–68. (Advances in Cancer Research). [DOI] [PubMed] [Google Scholar]
  28. Martineau R., Kohlbacher M., Shaw S.N., Amos H. Vol. 69. 1972. Enhancement of hexose entry into chick fibroblasts by starvation: Differential effect on galactose and glucose; pp. 3407–3411. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McCormick F., Harlow E. Association of a murine 53,000 dalton phosphoprotein with simian virus 40 large T antigen in transformed cells. J. ViroL. 1980;34:213–224. doi: 10.1128/jvi.34.1.213-224.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mellor A., Smith A.E. Characterization of the amino-terminal tryptic peptide of simian virus 40 small-t and large-T antigens. J. Virol. 1978;28:992–996. doi: 10.1128/jvi.28.3.992-996.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Niemann H., Geyer R., Klenk H.D., Linder D., Stirm S., Wirth M. Vol. 3. 1984. The carbohydrates of mouse hepatitis virus (MHV) A59: Structures of the O-glycosidically linked oligosaccharides of glycoprotein El; pp. 665–670. (EMBO J.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Niemann H., Klenk H.-D. Coronavirus glycoprotein El, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Noonan C.A., Brugge J.S., Butel J.S. Characterization of simian cells transformed by temperature-sensitive mutants of simian virus 40. J. Virol. 1976;18:1106–1119. doi: 10.1128/jvi.18.3.1106-1119.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Noonan C.A., Butel J.S. Temperaturesensitive mutants of simian virus 40. I. Isolation and preliminary characterization of B/C gene mutants. Intervirology. 1978;10:181–195. doi: 10.1159/000148982. [DOI] [PubMed] [Google Scholar]
  35. Ogata S.-I., Lloyd K.O. Mild alkaline borohydride treatment of glycoproteins-A method for liberating both N- and O-linked carbohydrate chains. Anal. Biochem. 1982;119:351–359. doi: 10.1016/0003-2697(82)90597-8. [DOI] [PubMed] [Google Scholar]
  36. Olden K., Bernard B.A., White S.L., Parent J.B. Function of the carbohydrate moieties of glycoproteins. J. CelL Biochem. 1982;18:313–335. doi: 10.1002/jcb.1982.240180306. [DOI] [PubMed] [Google Scholar]
  37. Owens R.B., Hackett A.J. Tissue culture studies of mouse mammary tumor cells and associated viruses. J. Natl. Cancer Inst. 1972;49:1321–1332. [PubMed] [Google Scholar]
  38. Pope J.H., Rowe W.P. Detection of specific antigen in SV40-transformed cells by immunofluorescence. J. Exp. Med. 1964;120:121–128. doi: 10.1084/jem.120.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Privalsky M.L., Sealy L., Bishop J.M., McGrath J.P., Levinson A.D. The product of the avian erythroblastosis virus erbB locus is a glycoprotein. Cell. 1983;32:1257–1267. doi: 10.1016/0092-8674(83)90307-0. [DOI] [PubMed] [Google Scholar]
  40. Prives C., Beck Y., Gidoni D., Oren M., Shure H. Vol. 44. 1979. DNA binding and sedimentation properties of SV40 T antigens synthesized in vivo and in vitro; pp. 123–130. (Cold Spring Harbor Symp. Quant BioL). [DOI] [PubMed] [Google Scholar]
  41. Rapp F., Butel J.S., Melnick J.L. Vol. 116. 1964. Virus-induced intranuclear antigen in cells transformed by papovavirus SV40; pp. 1131–1135. (Proc Soc. Exp. Biol. Med). [DOI] [PubMed] [Google Scholar]
  42. Rasilo M.L., Renkonen O. Mild alkaline borohydride treatment liberates N-acetylglucosamine-linked oligosaccharide chains of glycoproteins. FEBS Lett. 1981;135:38–42. doi: 10.1016/0014-5793(81)80938-6. [DOI] [PubMed] [Google Scholar]
  43. Reddy V.B., Thimmappaya B., Dhar R., Subramanian K.N., Zain B.S., Pan J., Celma M.J., Ghosh P.K., Weissman S.M. The genome of simian virus 40. Science (Washington, D. C.) 1978;200:494–502. doi: 10.1126/science.205947. [DOI] [PubMed] [Google Scholar]
  44. Reeves R., Chang D. Investigations of the possible functions for glycosylation in the high mobility group proteins. Evidence for a role in nuclear matrix association. J. Biol. Chem. 1983;258:679–687. [PubMed] [Google Scholar]
  45. Rigby P.W.J., Lane D.P. Structure and function of simian virus 40 large tumor antigen. In: Klein G., editor. Vol. 3. Raven Press; New York: 1983. pp. 31–57. (Advances in Virol. Oncology). [Google Scholar]
  46. Robb J.A., Huebner K. Effect of cell chromosome number on simian virus 40 replication. Exp. Cell Res. 1973;81:120–126. doi: 10.1016/0014-4827(73)90118-3. [DOI] [PubMed] [Google Scholar]
  47. Santos M., Butel J.S. Association of SV40 large tumor antigen and cellular proteins on the surface of SV40-transformed mouse cells. Virology. 1982;120:1–17. doi: 10.1016/0042-6822(82)90002-2. [DOI] [PubMed] [Google Scholar]
  48. Santos M., Butel J.S. Antigenic structure of simian virus 40 large tumor antigen and association with cellular protein p53 on the surfaces of simian virus 40-infected and -transformed cells. J. Virol. 1984;51:376–383. doi: 10.1128/jvi.51.2.376-383.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Scheller A., Covey L., Barnet B., Prives C. A small subclass of SV40 T antigen binds to the viral origin of replication. Cell. 1982;29:375–383. doi: 10.1016/0092-8674(82)90154-4. [DOI] [PubMed] [Google Scholar]
  50. Schmidt-Ullrich R., Thompson W.S., Kahn S.J., Monroe M.T., Wallach D.F.H. Simian virus 40 (SV40)-specific isoelectric point 4.7–94,000-M, membrane glycoprotein: Major peptide homology exhibited with the nuclear and membrane-associated 94,000-Mr SV40 T-antigen in hamsters. J. Natl. Cancer Inst. 1982;69:839–849. [PubMed] [Google Scholar]
  51. Schmidt-Ullrich R., Thompson W.S., Wallach D.F.H. Vol. 74. 1977. Antigenic distinctions of glycoproteins in plasma and mitochondrial membranes of lymphoid cells neoplastically transformed by simian virus 40; pp. 643–647. (Proc. Natl. Acad. Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Seif R. New properties of simian virus 40 large T antigen. Mol Cell Biol. 1982;2:1463–1471. doi: 10.1128/mcb.2.12.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Slagle B.L., Lanford R.E., Medina D., Butel J.S. Expression of mammary tumor virus proteins in preneoplastic outgrowth lines and mammary tumors of BALB/cV mice. Cancer Res. 1984;44:2155–2162. [PubMed] [Google Scholar]
  54. Soule H.R., Butel J.S. Subcellular localization of simian virus 40 large tumor antigen. J. Virol. 1979;30:523–532. doi: 10.1128/jvi.30.2.523-532.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Soule H.R., Lanford R.E., Butel J.S. Detection of simian virus 40 surface-associated large tumor antigen by enzyme-catalyzed radioiodination. Int. J. Cancer. 1982;29:337–344. doi: 10.1002/ijc.2910290318. [DOI] [PubMed] [Google Scholar]
  56. Spiro R.G. Characterization of carbohydrate units of glycoproteins. In: Neufeld E.F., Ginsburg V., editors. Vol. 8. Academic Press; New York: 1966. pp. 26–52. (Methods in Enzymology). [Google Scholar]
  57. Staufenbiel M., Deppert W. Different structural systems of the nucleus are targets for SV40 large T antigen. Cell. 1983;33:173–181. doi: 10.1016/0092-8674(83)90346-x. [DOI] [PubMed] [Google Scholar]
  58. Takatsuki A., Kohno K., Tamura G. Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agric. is Biol. Chern. 1975;39:2089–2091. [Google Scholar]
  59. Tarentino A.L., Maley F. Purification and properties of an endo-β-N-acetylglucosamini-dase from Streptomyces griseus. J. Biol. Chem. 1974;249:811–817. [PubMed] [Google Scholar]
  60. Tegtmeyer P., Rundell K., Collins J.K. Modification of simian virus 40 protein A. J. Virol. 1977;21:647–657. doi: 10.1128/jvi.21.2.647-657.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tevethia S.S., Katz M., Rapp F. Vol. 119. 1965. New surface antigen in cells transformed by simian papovavirus SV40; pp. 896–901. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  62. Tooze J. Cold Spring Harbor Laboratory; Cold Spring Harbor, N. Y: 1980. Molecular Biology of Tumor Viruses, 2nd ed. Part 2: DNA Tumor Viruses; pp. 61–338. [Google Scholar]
  63. Weintraub B.D., Stannard B.S., Meyers L. Glycosylation of thyroid-stimulating hormone in pituitary tumor cells: Influence of highmannose oligosaccharide units on subunit aggregation, combination, and intracellular degradation. Endocrinology. 1983;112:1331–1345. doi: 10.1210/endo-112-4-1331. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES