Abstract
The bovine coronavirus (BCV) spike glycoprotein precursor (S, formerly termed peplomer) and its two subunit polypeptides (S1 and S2) were individually expressed in Spodoptera frugiperda (Sf9) insect cells. Each recombinant baculovirus expressed both glycosylated (S, 170K; S1, 95K; S2, 80K) and unglycosylated (S0, 140K; S10, 75K; and S20, 65K) forms of BCV spike polypeptides in Sf9 cells. The mature 95K S1 polypeptide was secreted whereas the S and S2 polypeptides remained cell-associated. The S precursor was partially cleaved in Sf9 cells, and the resulting S1 was also released into the medium. Neutralizing monoclonal antibodies representing two antigenic domains bound to recombinant S and S1 but not the S2 polypeptides, indicating that two major epitopes for BCV neutralization are located on the S1 subunit.
References
- Cameron I.R., Posses R.D., Bishop D.H.L. Insect cell culture technology in baculovirus expression systems. Trends Biotechnol. 1989;7:66–70. [Google Scholar]
- Charlton C.A., Volkman L.E. Effect of tunicamycin on the structural proteins and infectivity of budded Autographa californica nuclear polyhedrosis virus. Virology. 1986;154:214–218. doi: 10.1016/0042-6822(86)90443-5. [DOI] [PubMed] [Google Scholar]
- Cavanagh D., Davis P.J. Coronavirus IBV: Removal of spike glycopeptide S1 by urea abolishes infectivity and hemagglutination but not attachment to cells. J. Gen. Virol. 1986;67:1443–1448. doi: 10.1099/0022-1317-67-7-1443. [DOI] [PubMed] [Google Scholar]
- Cavanagh D., Davis P.J., Mocket A.P.A. Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachussetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res. 1988;11:141–150. doi: 10.1016/0168-1702(88)90039-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cry-Coats K.St., Storz J., Hussain K.A., Schnorr K.L. Structural proteins of bovine coronavirus strain L9: Effects of the host cell and trypsin treatment. Arch. Virol. 1988;103:35–45. doi: 10.1007/BF01319807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deregt D., Babiuk L.A. Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology. 1987;68:410–420. doi: 10.1016/0042-6822(87)90134-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deregt D., Sabara M., Babiuk L.A. Structural proteins of bovine coroonavirus and their intracellular processing. J. Gen. Virol. 1987;68:2863–2877. doi: 10.1099/0022-1317-68-11-2863. [DOI] [PubMed] [Google Scholar]
- Deregt D., Parker M.D., Cox G.C., Babiuk L.A. Mapping of neutralizing epitopes to fragments of bovine coronavirus E2 protein by proteolysis of antigen-antibody complexes. J. Gen. Virol. 1989;70:647–658. doi: 10.1099/0022-1317-70-3-647. [DOI] [PubMed] [Google Scholar]
- Deregt D., Gifford G.A., Ijaz M.K., Watts T.C., Gilchrist J.E., Haines D.M., Babiuk L.A. Monoclonal antibodies to bovine coronavirus glycoprotein E2 and E3: Demonstration of in vivo virus-neutralizing activity. J. Gen. Virol. 1989;70:993–998. doi: 10.1099/0022-1317-70-4-993. [DOI] [PubMed] [Google Scholar]
- Gething M.J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport. Cell. 1986;46:936–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
- Hsieh P., Robbins P.W. Regulation of asparagine-linked oligosaccharide processing: Oligosaccaride processing in Aedes albopictus mosquito cells. J. Biol. Chem. 1984;259:2375–2382. [PubMed] [Google Scholar]
- Jarvis D.L., Summers M.D. Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol. Cell. Biol. 1989;9:214–223. doi: 10.1128/mcb.9.1.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiménez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kienzie T.E., Abraham S., Hogue B.G., Brian D.A. Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. J. Virol. 1990;64:1834–1838. doi: 10.1128/jvi.64.4.1834-1838.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King B., Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreis T.E., Lodish H.F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986;46:929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luckow V.A., Summers M.D. Trends in the development of baculovirus vectors. Bio/Technology. 1988;6:47–55. [Google Scholar]
- Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van der Zeijst B.A.A., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. Amino acid sequence of a conserved neutralizing epitope of murine coronavirus. J. Virol. 1989;63:1408–1412. doi: 10.1128/jvi.63.3.1408-1412.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino S., Fleming J.O., Keck J.G., Stohlmen S.A., Lai M.M.C. Vol. 84. 1987. RNA recombination of coronaviruses: Localization of neutralization epitopes and neuropathogenic determinants in the carboxy-terminus of peplomers; pp. 6557–6571. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura Y., Possee R.D., Overton H.A., Bishop D.H.L. Baculovirus expression vectors: The requirements for high level expression of proteins, including glycoproteins. J. Gen. Virol. 1987;68:1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
- Miller L.K. Baculovinuses as gene expression vectors. Annu. Rev. Microbiol. 1988;42:177–199. doi: 10.1146/annurev.mi.42.100188.001141. [DOI] [PubMed] [Google Scholar]
- Parker M.D., Cox G.J., Deregt D., Fitzpatrick D.R., Babiuk L.A. Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. J. Gen. Virol. 1989;70:155–164. doi: 10.1099/0022-1317-70-1-155. [DOI] [PubMed] [Google Scholar]
- Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker M.D., Yoo D., Babiuk L.A. Primary structure of the E2 peplomer gene of bovine coronavirus and surface expression in insect cells. J. Gen. Virol. 1990;71:263–270. doi: 10.1099/0022-1317-71-2-263. [DOI] [PubMed] [Google Scholar]
- Parker M.D., Yoo D., Babiuk L.A. Surface expression and secretion of the bovine coronavirus hemagglutini/esterase (HE) protein by insect cells infected with a recombinant baculovirus. J. Virol. 1990;64:1625–1629. doi: 10.1128/jvi.64.4.1625-1629.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennica D., Holms W.E., Kohr W.J., Harkins R.A., Vehar G.A., Bennette W.G., Yelverton E., Seeburg P.H., Heyneker H.L., Goeddel D.V., Collen D. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature (London) 1983;301:214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
- Schmidt I., Skinner M., Siddel S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
- Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses Structure and genome expression. J. Gen Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Storz J., Rott R., Kaluza G. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infect. Immun. 1981;31:1214–1222. doi: 10.1128/iai.31.3.1214-1222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.S., Richard C.S., Holms K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers M.D., Smith G.E. A manual of methods for baculovirus vectors and insect cell culture procedures. Tex. Agric. Exp. Stn. (Bull.) 1987:1555. [Google Scholar]
- Talbot P.J., Salmi A.A., Knobbler R.A., Buchmeier M.J. Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): Correlation with biological activities. Virology. 1984;132:250–260. doi: 10.1016/0042-6822(84)90032-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbot P.J., Dionne G., Lacroix M. Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk. J. Virol. 1988;62:3032–3036. doi: 10.1128/jvi.62.8.3032-3036.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomley F.M., Mocket A.P.A., Boursnell M.E.G., Binns M.M., Cook J.K.A., Brown T.D.K., Smith G.L. Expression of the infectious bronchitis virus spike protein by recombinant vaccinia virus and induction of neutralizing antibodies in vaccinated mice. J. Gen. Virol. 1987;68:2291–2298. doi: 10.1099/0022-1317-68-9-2291. [DOI] [PubMed] [Google Scholar]
- Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlasak R., Luytjes W., Spaan W., Palese P. Vol. 85. 1988. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses; pp. 4526–4529. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wathen M.W., Brideau R.J., Thomsen D.R. Immunization of cotton rats with the human respiratory syncytial virus F glycoprotein produced using a baculovirus vector. J. Infect. Dis. 1989;159:255–264. doi: 10.1093/infdis/159.2.255. [DOI] [PubMed] [Google Scholar]
- Wojchowski D.M., Parsons P., Nordin J.H., Kunkel J.C. Processing of provitellogenin in insect fat body: a role for high-mannose oligosaccharide. Dev. Biol. 1986;116:422–430. doi: 10.1016/0012-1606(86)90143-0. [DOI] [PubMed] [Google Scholar]
- Yoden S., Kikuchi T., Siddell S.G., Takuchi F. Expression of the peplomer glycoprotein of murne coronavirus JH M using a baculovirus vector. Virology. 1989;173:615–623. doi: 10.1016/0042-6822(89)90573-4. [DOI] [PMC free article] [PubMed] [Google Scholar]