Abstract
Subgenomic RNA transcription of coronaviruses involves the interaction between the leader (or antileader) and the intergenic (IG) sequences. However, it is not clear how these two sequences interact with each other. In this report, a previously unrecognized minor species of subgenomic mRNA, termed mRNA5–1, was identified in cells infected with mouse hepatitis virus (MHV) strains JHM2c, JHM(2), JHM(3), A59, and MHV-1. Sequence analysis revealed that the leader-body fusion site of the mRNA is located at approximately 150 nucleotides (nt) downstream of the consensus IG sequence for mRNA 5 and did not have sequence homology with any known IG consensus sequences. To determine whether this sequence functions independently as a promoter, we cloned a 140-nt sequence (from ≈70 nt upstream to ≈70 nt downstream of the fusion site) from viral genomic RNA and placed it in front of a reporter gene in the defective-interfering (DI) RNA-chloramphenicol acetyltransferase (CAT) reporter vector. Transfection of the reporter RNA into MHV-infected cells resulted in synthesis of a CAT-specific subgenomic mRNA detected by reverse transcription-polymerase chain reaction (RT-PCR). The strength of this promoter was similar to that of the IG7 (for mRNA 7) as measured by the CAT activity. Deletion analysis showed that the sequence as few as 13 nt was sufficient to initiate mRNA transcription, while mutations within the 13-nt abolished mRNA transcription. In vitro translation study confirmed that the envelope (E) protein was translated from mRNA5–1, which encodes the open reading frame (ORF) 5b at its 5′-end, indicating that mRNA5–1 is a functional message. Furthermore, when the ORF5b was replaced with the CAT gene and placed in the DI in the context of viral mini-genome, CAT was expressed not only from the first ORF of mRNA5–1 but also from the second and third ORF of mRNA5 and genomic DI RNA, respectively, suggesting that more than one mechanism is involved in regulation of ORF5b expression. Our findings thus support the notion that base-pairing between the leader (or antileader) and the IG is not the sole mechanism in subgenomic RNA transcription.
References
REFERENCES
- 1.Budzilowicz C.J., Wilczynski S.P., Weiss S.R. Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3′-end of the viral mRNA leader sequence. J. Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Fischer F., Stegen C.F., Koetzner C.A., Masters P.S. Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of coronavirus transcription. J. Virol. 1997;71:5148–5160. doi: 10.1128/jvi.71.7.5148-5160.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Godet M., Haridon R., Vautherot J.F., Laude H. TGEV coronavirus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992;188:666–675. doi: 10.1016/0042-6822(92)90521-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Hirano N., Fujiwara K., Hino S., Matsumoto M. Replication and plaque formation of mouse hepatitis virus (MHV-2) in mouse cell line DBT culture. Arch. Gesamte Virusforsch. 1974;44:298–302. doi: 10.1007/BF01240618. [DOI] [PubMed] [Google Scholar]
- 5.Jendrach M., Thiel V., Siddell S.G. Characterization of an internal ribosome entry site within mRNA5 of murine hepatitis virus. Arch. Virol. 1999;144:921–933. doi: 10.1007/s007050050556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Lai M.M.C. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology. 1998;244:1–12. doi: 10.1006/viro.1998.9098. [DOI] [PubMed] [Google Scholar]
- 7.Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus-a cytoplasmic RNA virus. Proc. Natl. Acad. Sci. USA. 1984;81:3626–3630. doi: 10.1073/pnas.81.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Lai M.M.C., Cavanagh D. The molecular biology of coronaviruses. Adv. Virus Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Lai M.M.C., Brayton P.R., Armen R.C., Patton C.D., Pugh C., Stohlman S.A. Mouse hepatitis virus A59: Messenger RNA structure and genetic localization of the sequence divergence from the hepatotropic strain MHV 3. J. Virol. 1981;39:823–834. doi: 10.1128/jvi.39.3.823-834.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lai M.M.C., Patton C.D., Baric R.S., Stohlman S.A. The presence of leader sequences in the mRNA of mouse hepatitis virus. J. Virol. 1983;46:1027–1033. doi: 10.1128/jvi.46.3.1027-1033.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Lee H.J., Shieh C.K., Gorbalenya A.E., Koonin E.V., La Monica N., Tuler J., Bagdzyahdzhyan A., Lai M.M.C. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991;180:567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Leibowitz J.L., Wilhemsen K.C., Bond C.W. The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology. 1981;114:39–51. doi: 10.1016/0042-6822(81)90250-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Liao C.L., Lai M.M.C. Requirement of the 5′-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. J. Virol. 1994;68:4727–4737. doi: 10.1128/jvi.68.8.4727-4737.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Liao C.-L., Zhang X.M., Lai M.M.C. Coronavirus defective-interfering RNA as an expression vector: the generation of a pseudorecombinant mouse hepatitis virus expressing hemagglutinin-esterase. Virology. 1995;208:319–327. doi: 10.1006/viro.1995.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Makino S., Lai M.M.C. Evolution of the 5′-end of genomic RNA of murine coronaviruses during passages in vitro. Virology. 1989;169:227–232. doi: 10.1016/0042-6822(89)90060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Makino S., Lai M.M.C. High-frequency leader sequence switching during coronavirus defective interfering RNA replication. J. Virol. 1989;63:5285–5292. doi: 10.1128/jvi.63.12.5285-5292.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Makino S., Joo M., Makino J.K. A system for study of coronavirus mRNA synthesis: A regulated expressed subgenomic defective interfering RNA results from intergenic site insertion. J. Virol. 1991;65:6031–6041. doi: 10.1128/jvi.65.11.6031-6041.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Makino S., Soe L.H., Shieh C.K., Lai M.M.C. Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs. J. Virol. 1988;62:3870–3873. doi: 10.1128/jvi.62.10.3870-3873.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Makino S., Taguchi F., Hirano N., Fujiwara K. Analysis of genomic and intercellular viral RNAs of small plaque mutants of mouse hepatitis virus, JHM strain. Virology. 1984;39:138–151. doi: 10.1016/0042-6822(84)90335-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.O'Connor J.B., Brian D.A. Downstream ribosomal entry for translation of coronavirus TGEV gene 3b. Virology. 2000;269:172–182. doi: 10.1006/viro.2000.0218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Pachuk C.J., Bredenbeek P.J., Zoltick P.W., Spaan W.J.M., Weiss S.R. Molecular cloning of the gene encoding the putative polymerase of mouse hepatitis coronavirus strain A59. Virology. 1989;171:141–148. doi: 10.1016/0042-6822(89)90520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Schaad M.C., Baric R.S. Evidence for new transcriptional units encoded at the 3′ end of the mouse hepatitis virus genome. Virology. 1993;196:190–198. doi: 10.1006/viro.1993.1467. [DOI] [PubMed] [Google Scholar]
- 23.Shieh C.K., Lee H.J., Yokomori K., La Monica N., Makino S., Lai M.M.C. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 1989;63:3729–3736. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Siddell, S. G.1995. The small membrane protein. In The Coronaviridae (S. G. Siddell, Ed.), pp. 181–190. Plenum, New York.
- 25.Smith A.R., Boursnell M.E., Binns M.M., Brown T.D., Inglis S.C. Identification of a new membrane-associated polypeptide specified by the coronavirus infectious bronchitis virus. J. Gen. Virol. 1990;71:3–11. doi: 10.1099/0022-1317-71-1-3. [DOI] [PubMed] [Google Scholar]
- 26.Spaan W.J.M., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B.A.M., Siddell S.G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Thiel V., Siddell S.G. Internal ribosome entry in the coding region of murine hepatitis virus mRNA5. J. Gen. Virol. 1994;75:3041–3046. doi: 10.1099/0022-1317-75-11-3041. [DOI] [PubMed] [Google Scholar]
- 28.Thiel, V., and Siddell, S. G.1995. Translation of the MHV sM protein is mediated by the internal entry of ribosomes on mRNA5. In Corona- and Related Viruses (P. J. Talbot and G. A. Levy, Eds.), pp. 311–315. Plenum, New York. [DOI] [PubMed]
- 29.van Marle G., Dobbe J.C., Gultyaev A.P., Luytjes W., Spaan W.J.M., Snijder E.J. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc. Natl. Acad. Sci. USA. 1999;96:12056–12061. doi: 10.1073/pnas.96.21.12056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Vennema H., Godeke G.J., Rossen J.W.A., Voorhout W.F., Horzinek M.C., Opstelten D.J.E., Rottier P.J.M. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996;15:2020–2028. doi: 10.1002/j.1460-2075.1996.tb00553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Yu X., Bi W., Weiss S.R., Leibowitz J.L. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology. 1994;202:1018–1023. doi: 10.1006/viro.1994.1430. [DOI] [PubMed] [Google Scholar]
- 32.Zhang, X. M. 2000, Heterogeneity of subgenomic mRNAs of a mutant mouse hepatitis virus strain JHM2c. In, The Nidoviruses, (, E. Lavi, et al., Eds.), Plenum, New York. [DOI] [PubMed]
- 33.Zhang X.M., Lai M.M.C. Unusual heterogeneity of leader-mRNA fusion in a murine coronavirus: Implications for the mechanism of RNA transcription and recombination. J. Virol. 1994;68:6626–6633. doi: 10.1128/jvi.68.10.6626-6633.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Zhang X.M., Lai M.M.C. Interaction between the cytoplasmic proteins and the intergenic (promoter) sequence of mouse hepatitis virus RNA: Correlation with amount of subgenomic mRNA transcribed. J. Virol. 1995;69:1637–1644. doi: 10.1128/jvi.69.3.1637-1644.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Zhang X.M., Liao C.L., Lai. M.M.C. Coronavirus leader RNA regulates and initiates subgenomic mRNA transcription both in trans and in cis. J. Virol. 1994;68:4738–4746. doi: 10.1128/jvi.68.8.4738-4746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Zhang X.M., Hinton D.R., Cue D., Stohlman S.A., Lai M.M.C. Expression of gamma interferon by a coronavirus defective-interfering RNA vector and its effect on viral replication, spread and pathogenicity. Virology. 1997;233:327–338. doi: 10.1006/viro.1997.8598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Zhang X.M., Hinton D.R., Parra B., Park S., Liao C.L., Lai M.M.C., Stohlman S.A. Expression of hemagglutinin/esterase by a mouse hepatitis virus coronavirus defective-interfering RNA alters viral pathogenesis. Virology. 1998;242:170–183. doi: 10.1006/viro.1997.8993. [DOI] [PMC free article] [PubMed] [Google Scholar]