Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;163(2):276–283. doi: 10.1016/0042-6822(88)90267-X

Cholesterol enhances mouse hepatitis virus-mediated cell fusion

Maleki Daya 1, Marguerite Cervin 1, Robert Anderson 1,1
PMCID: PMC7130774  PMID: 2833007

Abstract

Mouse hepatitis virus (MHV) infection of the L-2 subline of mouse fibroblasts results in acute infection characterized by extensive cell fusion. In contrast, infection of the LM-K subline leads to virus persistence with reduced cell fusion. We undertook studies designed to elucidate the role of host cell membrane lipid composition and the cytoskeleton in modulating the fusion process and the resultant effect(s) on virus persistence. MHV-induced cell fusion proceeded normally in cells treated with cytoskeleton-disrupting drugs, cytochalasin B and colchicine. Modification of cell membrane fatty acid composition by supplementation of LM-K cells with arachidonic (C-20:4) or palmitic (C-16:0) acids had little effect on the extent of MHV-induced cell fusion or on virus replication. However, supplementation of both cell types with cholesterol (resulting in increased membrane cholesterol/fatty acid ratio) resulted in marked enhancement of virus-mediated cell fusion. The increase in cell membrane cholesterol did not enhance internalization of MHV suggesting that cholesterol primarily modulates a later event. This suggestion was confirmed by demonstrating cholesterol-enhancement of fusion in a contact fusion assay. Cholesterol-supplemented L-2 cells were less productive for virus replication than unsupplemented cells, in agreement with our previous observations that MHV replication is compromised by extensive cytopathic effect. Although cholesterol-supplemented LM-K cells showed increased susceptibility to MHV-mediated cell fusion, the extent of such susceptibility did not approach that observed in L-2 cells. Also, the property of LM-K cells to support MHV persistence was not abolished by cholesterol supplementation. Thus membrane fusion resistance and MHV persistence are modulated but not alleviated by cell membrane cholesterol content.

References

  1. Borochov H., Abbott R.E., Schachter D., Shinitzky M. Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity. Biochemistry. 1979;18:251–255. doi: 10.1021/bi00569a002. [DOI] [PubMed] [Google Scholar]
  2. Breisblatt W., Ohki S. Fusion of phospholipid spherical membranes. II. Effect of cholesterol, divalent ions and pH. J. Membrane Biol. 1976;29:127–146. doi: 10.1007/BF01868956. [DOI] [PubMed] [Google Scholar]
  3. Buchmeier M.J., Lewicki H.A., Talbot P.J., Knobler R.L. Murine hepatitis virus-4 (strain JHM)-induced neurologic disease is modulated in vivo by monoclonal antibody. Virology. 1984;132:261–270. doi: 10.1016/0042-6822(84)90033-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheever F.S., Daniels J.B., Pappenheimer A.M., Bailey O.T. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. I. Isolation and biologic properties of the virus. J. Exp. Med. 1949;90:181–194. doi: 10.1084/jem.90.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doi O., Doi F., Schroeder F., Alberts A.W., Vagelos P.R. Manipulation of fatty acid composition of membrane phospholipid and its effects on cell growth in mouse LM cells. Biochim. Biophys. Acta. 1978;509:239–250. doi: 10.1016/0005-2736(78)90044-5. [DOI] [PubMed] [Google Scholar]
  6. Dubois-Dalcq M.E., Doller E.W., Haspel M.V., Holmes K.V. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virology. 1982;119:317–331. doi: 10.1016/0042-6822(82)90092-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eidelman O., Schlegel R., Tralka T.S., Blumenthal R. pH-dependent fusion induced by vesicular stomatitis virus glycoprotein reconstituted into phospholipid vesicles. J. Biol. Chem. 1984;259:4622–4628. [PubMed] [Google Scholar]
  8. Haspel M.V., Lampert P.W., Oldstone M.B.A. Vol. 75. 1978. Temperature-sensitive mutants of mouse hepatitis virus produce a high incidence of demyelination; pp. 4033–4036. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haywood A.M., Boyer B.P. Effect of lipid composition upon fusion of liposomes with Sendai virus membranes. Biochem. 1984;23:4161–4166. doi: 10.1021/bi00313a024. [DOI] [PubMed] [Google Scholar]
  10. Hirano N., Goto N., Ogawa T., Ono K., Murakami T., Fujiwara K. Hydrocephalus in suckling rats infected intracerebrally with mouse hepatitis virus, MHV-A59. Microbiol. Immunol. 1980;24:825–834. doi: 10.1111/j.1348-0421.1980.tb02887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmes K.V., Choppin P.W. On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J. Cell Biol. 1968;39:526–543. doi: 10.1083/jcb.39.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hope M.J., Bruckdorfer K.R., Hart C.A., Lucy J.A. Membrane cholesterol and cell fusion of hen and guinea pig erythrocytes. Biochem. J. 1972;166:255–263. doi: 10.1042/bj1660255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hsu M.C., Scheid A., Choppin P.W. Fusion of Sendai virus with liposomes: Dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology. 1983;126:361–369. doi: 10.1016/0042-6822(83)90485-3. [DOI] [PubMed] [Google Scholar]
  14. Kit S., Dubbs D.R., Piekarski L.J., Hsu T.C. Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine. Exp. Cell Res. 1963;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
  15. LePrevost C., Virelizier J.L., Dupuy J.M. Immunopathology of mouse hepatitis virus type 3 infection. III. Clinical and virologic observation of a persistent viral infection. J. Immunol. 1975;115:640–643. [PubMed] [Google Scholar]
  16. Maeda T., Kawasaki K., Ohnishi S.I. Vol. 78. 1981. Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2; pp. 4133–4137. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mallucci L., Edwards B. Influence of the cytoskeleton on the expression of a mouse hepatitis virus (MHV-3) in peritoneal macrophages: Acute and persistent infection. J. Gen. Virol. 1982;63:217–221. doi: 10.1099/0022-1317-63-1-217. [DOI] [PubMed] [Google Scholar]
  18. Manaker R.A., Piczak C.V., Miller A.A., Stanton M.F. A hepatitis virus complicating studies with mouse leukemia. J. Natl. Cancer Inst. 1961;27:29–51. [PubMed] [Google Scholar]
  19. Mizzen L., Cheley S., Rao M., Wolf R., Anderson R. Fusion resistance and decreased infectability as major host cell determinants of coronaviruS persistence. Virology. 1983;128:407–417. doi: 10.1016/0042-6822(83)90266-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mizzen L., Hilton A., Cheley S., Anderson R. Attenuation of murine coronavirus infection by ammonium chloride. Virology. 1985;142:378–388. doi: 10.1016/0042-6822(85)90345-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mizzen L., Macintyre G., Wong F., Anderson R. Translational regulation in mouse hepatitis virus infection is not mediated by altered intracellular ion concentrations. J. Gen. Virol. 1987;68:2143–2151. doi: 10.1099/0022-1317-68-8-2143. [DOI] [PubMed] [Google Scholar]
  22. Nagashima K., Wege H., Meyermann R., Ter Meulen V. Demyelinating encephalomyelitis induced by long-term coronavirus infection in rats. A preliminary report. Acta Neuropathol. 1978;45:205–213. doi: 10.1007/BF00702672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oldfield E., Chapman D. Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol. FEBS Lett. 1972;23:285–297. doi: 10.1016/0014-5793(72)80300-4. [DOI] [PubMed] [Google Scholar]
  24. Papahadjopoulos D., Nir S., Ohki S. Permeability properties of phospholipid membranes: effect of cholesterol and temperature. Biochim. Biophys. Acta. 1972;266:561–583. doi: 10.1016/0006-3002(72)90001-7. [DOI] [PubMed] [Google Scholar]
  25. Papahadjopoulos D., Poste G., Schaeffer B.E. Fusion of mammalian cells by unilamellar lipid vesicles: Influence of lipid surface charge, fluidity and cholesterol. Biochim. Biophys. Acta. 1973;323:23–42. doi: 10.1016/0005-2736(73)90429-x. [DOI] [PubMed] [Google Scholar]
  26. Papahadjopoulos D., Poste G., Schaeffer B.E., Vail W.J. Membrane fusion and molecular segregation in phospholipid vesicles. Biochim. Biophys. Acta. 1974;352:10–28. doi: 10.1016/0005-2736(74)90175-8. [DOI] [PubMed] [Google Scholar]
  27. Rothfels K.H., Axelrad A.A., Siminovitch L., McCulloch E.A., Parker R.C. The origin of altered cell lines from mouse, monkey and man as indicated by chromosome and transplantation studies. Canad. Cancer Conf. 1959;3:189–214. [Google Scholar]
  28. Shinitsky M. An efficient method for modulation of cholesterol level in cell membranes. FEBS Lett. 1978;85:317–320. doi: 10.1016/0014-5793(78)80482-7. [DOI] [PubMed] [Google Scholar]
  29. Sorensen O., Percy D., Dales S. In vivo and in vitro models of demyelinating diseases. III. JHM virus infection of rats. Arch. Neurol. 1980;37:478–484. doi: 10.1001/archneur.1980.00500570026003. [DOI] [PubMed] [Google Scholar]
  30. Spector A.A., Hoak J.C. An improved method for the addition of long chain free fatty acid to protein solutions. Anal. Biochem. 1969;32:297–302. doi: 10.1016/0003-2697(69)90089-x. [DOI] [PubMed] [Google Scholar]
  31. Wege H., Siddell S., Ter Meulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  32. Weiner L.P. Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus) Arch. Neurol. 1973;28:298–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  33. White J., Helenius A. Vol. 77. 1980. pH-dependent fusion between Semliki Forest Virus membrane and liposomes; pp. 3273–3277. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES