Abstract
A strategy for targeted RNA recombination between the spike gene on the genomic RNA of MHV-A59 and a synthetic DI RNA containing the MHV-RI spike gene is described. The MHV-RI spike gene contains several nucleotide differences from the MHV-A59 spike gene that could be used as genetic markers, including a stretch of 156 additional nucleotides starting at nucleotide 1497. The MHV-RI S gene cDNA (from nucleotide 277-termination codon) was inserted in frame into pMIDI, a full-length cDNA clone of an MHV-A59 DI, yielding pDPRIS. Using the vaccinia vTF7.3 system, RNA was transcribed from pDPRIS upon transfection into MHV-A59-infected L cells. DPRIS RNA was shown to be replicated and passaged efficiently. MHV-A59 and the DPRIS DI particle were copassaged several times. Using a highly specific and sensitive RT-PCR, recombinant genomic RNA was detected in intracellular RNA from total lysates of pDPRIS-transfected and MHV-A59-infected cells and among genomic RNA that was agarose gel-purified from these lysates. More significantly, specific PCR products were found in virion RNA from progeny virus. PCR products were absent in control mixes of intracellular RNA from MHV-A59-infected cells andin vitro-transcribed DPRIS RNA. PCR products from intracellular RNA and virion RNA were cloned and 11 independent clones were sequenced. Crossovers between A59 and RI RNA were found upstream of nucleotide 1497 and had occurred between 106 nucleotides from the 5′-border and 73 nucleotides from the 3′-border of sequence homologous between A59 and RI S genes. We conclude that homologous RNA recombination took place between the genomic RNA template and the synthetic DI RNA template at different locations, generating a series of MHV recombinant genomes with chimeric S genes.
Footnotes
P. N. BhattR. O. Jacoby, Eds.
References
REFERENCES
- 1.Banner L.R., Keck J.G., Lai M.M.C. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology. 1990;175:548–555. doi: 10.1016/0042-6822(90)90439-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Banner L.R., Lai M.M.C. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology. 1991;185:441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Barthold S.W. Viral and Mycoplasmal Infections of Laboratory Rodents. Academic Press; New York: 1986. Mouse hepatitis virus biology and epizootiology. p. 571–601. [Google Scholar]
- 4.Barthold S.W. Host age and genotypic effects on enterotropic mouse hepatitis virus infection. Lab. Anim. Sci. 1987;37:36–40. [PubMed] [Google Scholar]
- 5.Barthold S.W., Beck D.S., Smith A.L. Enterotropic coronavirus (mouse hepatitis virus) in mice: influence of host age and strain on infection and disease. Lab. Anim. Sci. 1993;43:276–284. [PubMed] [Google Scholar]
- 6.Barthold S.W., Smith A.L., Povar M.L. Enterotropic mouse hepatitis virus infection in nude mice. Lab. Anim. Sci. 1985;35:613–618. [PubMed] [Google Scholar]
- 7.Carpenter C.D., Oh J-W., Zhang C., Simon A.E. Involvement of a stem-loop structure in the location of junction sites in viral RNA recombination. J. Mol. Biol. 1995;245:608–622. doi: 10.1006/jmbi.1994.0050. [DOI] [PubMed] [Google Scholar]
- 8.Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119 doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Compton S.R., Barthold S.W., Smith A.L. The cellular and molecular pathogenesis of coronaviruses. Lab. Anim. Sci. 1993;43:15–28. [PubMed] [Google Scholar]
- 10.De Groot R.J., Van der Most R.G., Spaan W.J.M. The fitness of defective interfering murine coronavirus DI-a and its derivatives is decreased by nonsense and frameshift mutations. J. Virol. 1992;66:5898–5905. doi: 10.1128/jvi.66.10.5898-5905.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Dalziel R.G., Lampert P.W., Talbot P.J., Buchmeier M.J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Daniel C., Talbot P.J. Protection of mice from lethal coronavirus MHV-A59 infection by monoclonal affinity-purified spike glycoprotein. In: Cavanagh D., Brown T.D.K., editors. Coronaviruses and Their Diseases. Plenum Press; New York: 1990. pp. 205–210. [DOI] [PubMed] [Google Scholar]
- 13.Fazakerley J.K., Parker S.E., Bloom F., Buchmeier M.J. The V5A13.1. envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology. 1992;187:178–188. doi: 10.1016/0042-6822(92)90306-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Fleming J.O., Trousdale M.D., El-Zaatari F.A.K., Stohlman S.A., Weiner L.A. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J. Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Hahn Y.S., Grakoui A., Rice C.M., Strauss E.G., Strauss J.H. Mapping of RNA-temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4. J. Virol. 1989;63:1194–1202. doi: 10.1128/jvi.63.3.1194-1202.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Hahn Y.S., Strauss E.G., Strauss J.H. Mapping of RNA-temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. J. Virol. 1989;63:3142–3150. doi: 10.1128/jvi.63.7.3142-3150.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Hasony H.J., Macnaughton M.R. Antigenicity of mouse hepatitis virus strain 3 subcomponents in C57 strain mice. Arch. Virol. 1981;69 doi: 10.1007/BF01315263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Hingley S.T., Gombold J.L., Lavi E., Weiss S.R. MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology. 1994;200:1–10. doi: 10.1006/viro.1994.1156. [DOI] [PubMed] [Google Scholar]
- 19.Jarvis T.C., Kirkegaard K. The polymerase in its labyrinth: mechanisms and implications of RNA recombination. Trends Genet. 1991;7:186–191. doi: 10.1016/0168-9525(91)90434-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Keck J.G., Soe L.H., Markino S., Lai M.M.C. RNA recombination of murine coronavirus: recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus. J. Virol. 1988;62:1989–1998. doi: 10.1128/jvi.62.6.1989-1998.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Keck J.G., Stohlman S.A., Soe L.H., Makino S., Lai M.M.C. Multiple recombination sites at the 5′-end of murine coronavirus RNA. Virology. 1987;156:331–341. doi: 10.1016/0042-6822(87)90413-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Koetzner C.A., Parker M.M., Richard C.S., Sturman L.S., Masters P.S. Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. J. Virol. 1992;66:1841–1848. doi: 10.1128/jvi.66.4.1841-1848.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Kohara M., Omata T., Kameda A., Semler B.L., Itoh H., Wimmer E., Nomoto A. In vitro phenotypic markers of a poliovirus recombinant constructed from infectious cDNA clones of the neurovirulent Mahoney strain and the attenuated sabin strain. J. Virol. 1985;53:786–792. doi: 10.1128/jvi.53.3.786-792.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Kunita S., Zhang L., Homberger F.R., Compton S.R. Molecular characterization of the S proteins of two enterotropic murine coronavirus strains. Virus Res. 1995;35:277–289. doi: 10.1016/0168-1702(94)00089-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Lai M.M.C., Baric R.S., Makino S., Keck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. Recombination between nonsegmented RNA genomes of murine coronavirus. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.La Monica N., Meriam C., Racaniello V.C. Mapping of sequences required for mouse neurovirulence of poliovirus type 28 Lansing. J. Virol. 1986;57:515–525. doi: 10.1128/jvi.57.2.515-525.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Langridge L., Langridge P., Bergquist P.L. Extraction of nucleic acids from agarose gels. Anal. Biochem. 1980;103:661–670. doi: 10.1016/0003-2697(80)90266-3. [DOI] [PubMed] [Google Scholar]
- 29.Lustig S., Jackson A.C., Hahn C.S., Griffin D.E., Strauss E.G., Strauss J.H. Molecular basis of Sindbis virus neurovirulence in mice. J. Virol. 1988;62:2329–2336. doi: 10.1128/jvi.62.7.2329-2336.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Luytjes W., Sturman L.S., Bredenbeek P.J., Charité J., Van der Zeijst B.A.M., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Luytjes W., Gerritsma H., Spaan W.J.M. Replication of synthetic defective interfering RNAs derived from coronavirus mouse hepatitis virus-A59. Virology. 1996;216:174–183. doi: 10.1006/viro.1996.0044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Makino S., Fleming J.O., Keck J.G., Stohlman S.A., Lai M.M.C. RNA recombination of coronavirus: location of neutralizing epitopes and neuropathogenic determinants on the carboxyl terminus of peplomers. Proc. Natl. Acad. Sci. USA. 1987;84:6567–6571. doi: 10.1073/pnas.84.18.6567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Makino S., Keck J.G., Stohlman S.A., Lai M.M.C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Makino S., Taguchi F., Fujiwara K. Defective interfering particles of mouse hepatitis virus. Virology. 1984;133:9–17. doi: 10.1016/0042-6822(84)90420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Masters P.S., Koetzner C.A., Kerr C.A., Heo Y. Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus. J. Virol. 1994;68:328–337. doi: 10.1128/jvi.68.1.328-337.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 1984;138:267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
- 37.Nagy P.D., Bujarsky J.J. Efficient system of homologous RNA recombination in brome mosaic virus: sequence and structure requirements and accuracy of crossovers. J. Virol. 1995;69:2547–2556. doi: 10.1128/jvi.69.1.131-140.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Nagy P.D., Bujarsky J.J. Homologous RNA recombination in brome mosaic virus: AU-rich sequences decrease the accuracy of crossovers. J. Virol. 1996;70:415–426. doi: 10.1128/jvi.70.1.415-426.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Omata T., Kohara M., Kuge S., Komatsu T., Abe S., Semler B.L., Kameda A., Itoh H., Arita M., Wimmer E., Nomoto A. Genetic analysis of the attenuation phenotype of poliovirus type 1. J. Virol. 1986;58:348–358. doi: 10.1128/jvi.58.2.348-358.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Peng D., Koetzner C.A., Masters P.S. Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination. J. Virol. 1995;69:3449–3457. doi: 10.1128/jvi.69.6.3449-3457.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Pincus S.E., Wimmer E. Production of guanidine-resistant and dependent poliovirus mutants from cloned cDNA mutations in polypeptide 2c are directly responsible for altered guanidine sensitivity. J. Virol. 1986;60:793–796. doi: 10.1128/jvi.60.2.793-796.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Romanova L.I., Blinov V.M., Tolskaya E.A., Viktorova E.G., Kolesnikova M.S., Guseva E.A., Agol V.I. The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology. 1986;155:202–213. doi: 10.1016/0042-6822(86)90180-7. [DOI] [PubMed] [Google Scholar]
- 43.Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1989. [Google Scholar]
- 44.Spaan W.J.M., Rottier P.J.M., Horzinek M.C., Van der Zeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Tolskaya E.A., Romanova L.I., Blinov V.M., Viktorova E.G., Sinyakov A.N., Koleskinova M.S., Agol V.I. Studies on the recombination between RNA genomes of poliovirus: the primary structure and nonrandom distribution of crossover regions in the genomes of intertypic poliovirus recombinants. Virology. 1987;161:54–61. doi: 10.1016/0042-6822(87)90170-x. [DOI] [PubMed] [Google Scholar]
- 46.Van der Most R.G., Bredenbeek P.J., Spaan W.J.M. A domain at the 3′ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J. Virol. 1991;65:3219–3226. doi: 10.1128/jvi.65.6.3219-3226.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Van der Most R.G., Heijnen L., Spaan W.J.M., De Groot R.J. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Res. 1992;13:3375–3381. doi: 10.1093/nar/20.13.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Van der Most R.G., Rutjes S., Spaan W.J.M. Translation but not the encoded sequence is essential for the propagation of the defective interfering RNAs of the coronavirus mouse hepatitis virus. J. Virol. 1995;69:3744–3751. doi: 10.1128/jvi.69.6.3744-3751.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Wege H., Winter J., Meyermann R. The peplomer protein E2 of coronavirus JHM as a determinant of neurovirulence: definition of critical epitopes by variant analysis. J. Gen. Virol. 1988;69:87–98. doi: 10.1099/0022-1317-69-1-87. [DOI] [PubMed] [Google Scholar]