Abstract
The genomic RNA from turnip yellow mosaic virus presents a 3′-end functionally and structurally related to tRNAs. This report summarizes our knowledge about the peculiar structure of the tRNA-like domain and its interaction with tRNA specific proteins, like RNAse P, tRNA nucleotidyl-transferase, aminoacyl-tRNA synthetases, and elongation factors. It discusses also the biological role of this structure in the viral life cycle. A brief survey of our knowledge of other tRNA mimicries in biological systems, as well as their relevance for understanding canonical tRNA, will also be presented.
Keywords: turnip yellow mosaic virus RNA, tRNA-like structure, aminoacylation, replication
Abbreviations: TYMV, turnip yellow mosaic virus; BMV, brome mosaic virus; TMV, tobacco mosaic virus; TYMC, Corvallis strain of TYMV RNA; TY-Alu, clones of cDNA fragments of different length starting at restriction sites Alu containing the tRNA-like domain of TYMV RNA; TY-Dde, clones of cDNA fragments of different length starting at restriction sites Dde containing the tRNA-like domain of TYMV RNA; TY-Dra, clones of cDNA fragments of different length starting at restriction sites Dra containing the tRNA-like domain of TYMV RNA; TY-Sma, clones of cDNA fragments of different length starting at restriction sites Sma containing the tRNA-like domain of TYMV RNA; TY-AA, clone of cDNA containing the amino acid accepting branch of TYMV RNA; aaRS, aminoacyl-tRNA synthetase (amino acids are abbreviated by the three-letter code); CP, coat protein; ORF, open reading frame
References
- 1.Markham R, Smith KM. Studies on the virus of turnip yellow mosaic. Parasitology. 1949;39:330–342. doi: 10.1017/s0031182000083918. [DOI] [PubMed] [Google Scholar]
- 2.Hirth L, Givord L. Tymoviruses. In: Koenig R, editor. 2nd edn. vol 3. Plenum Publishing Corporation; 1988. pp. 163–212. (The plant viruses). [Google Scholar]
- 3.Morch MD, Boyer JC, Haenni AL. Overlapping open reading frames revealed by nucleotide sequencing of turnip yellow mosaic virus genomic RNA. Nucleic Acids Res. 1988;16:6157–6173. doi: 10.1093/nar/16.13.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Dreher TC, Bransom KL. Genomic RNA sequence of turnip yellow mosaic virus isolate TYMC, a cDNA-based clone with verified infectivity. Plant Mol Biol. 1992;18:403–406. doi: 10.1007/BF00034967. [DOI] [PubMed] [Google Scholar]
- 5.Keese P, Mackenzie A, Gibbs A. Nucleotide sequence of the genome of an Australian isolate of turnip yellow mosaic tymovirus. Virology. 1989;172:536–546. doi: 10.1016/0042-6822(89)90196-7. [DOI] [PubMed] [Google Scholar]
- 6.Morch MD, Drugeon G, Szafranski P, Haenni AL. Proteolytic origin of the 150-kilodalton protein encoded by turnip yellow mosaic virus genomic RNA. J Virol. 1989;63:5153–5158. doi: 10.1128/jvi.63.12.5153-5158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Bransom KL, Weiland JJ, Dreher TW. Proteolytic maturation of the 206-kDa nonstructural protein encoded by turnip yellow mosaic virus RNA. Virology. 1991;184:351–358. doi: 10.1016/0042-6822(91)90851-2. [DOI] [PubMed] [Google Scholar]
- 8.Weiland JJ, Dreher TC. Infectious TYMV RNA from cloned cDNA. Effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs. Nucleic Acids Res. 1989;17:4675–4687. doi: 10.1093/nar/17.12.4675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Beljanski M. L'ARN isolé du virus de la mosaïque jaune du navet accepteur des L-acides-aminés en présence d'enzymes bactériens. Bull Soc Chim Biol. 1965;47:1645–1652. [PubMed] [Google Scholar]
- 10.Pinck M, Yot P, Chapeville F, Duranton H. Enzymatic binding of valine to the 3′-end of TYMV RNA. Nature. 1970;226:954–956. doi: 10.1038/226954a0. [DOI] [PubMed] [Google Scholar]
- 11.Yot P, Pinck M, Haenni AL, Duranton H, Chapeville F. 2nd edn. Vol. 67. 1970. Valine-specific tRNA-like structure in turnip yellow mosaic virus RNA; pp. 1345–1352. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Litvak S, Tarrago A, Tarrago-Litvak L, Allende JE. Host elongation factor in vitro interaction with TYMV and TMV genome depends on viral tRNA aminoacylation. Nature New Biol. 1973;241:88–93. doi: 10.1038/newbio241088a0. [DOI] [PubMed] [Google Scholar]
- 13.Joshi RL, Ravel JM, Haenni AL. Interaction of turnip yellow mosaic virus Val-RNA with eukaryotic elongation factor EF-1α. Search for a function. EMBO J. 1986;5:1143–1148. doi: 10.1002/j.1460-2075.1986.tb04339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Litvak S, Tarrago-Litvak L, Chapeville F. TYMV-RNA as a substrate of transfer RNA nucleotidyl-transferase. II. Incorpration of cytidine 5'−monophosphate and determination of a short nucleotides sequence at the 3′-end of the RNA. J Virology. 1973;11:238–242. doi: 10.1128/jvi.11.2.238-242.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Prochiantz A, Haenni AL. TYMV RNA as a substrate of the tRNA maturation endonuclease. Nature. 1973;241:168–170. doi: 10.1038/newbio241168a0. [DOI] [PubMed] [Google Scholar]
- 16.Haenni AL, Joshi S, Chapeville F. tRNA-like structures in the genomes of RNA viruses. Prog Nucleic Acid Res Mol Biol. 1982;27:85–104. doi: 10.1016/s0079-6603(08)60598-x. [DOI] [PubMed] [Google Scholar]
- 17.Giegé R, Briand JP, Mengual R, Ebel JP, Hirth L. Valylation of the two RNA components of turnip yellow mosaic virus and specificity of the aminoacylation reaction. Eur J Biochem. 1978;84:251–256. doi: 10.1111/j.1432-1033.1978.tb12163.x. [DOI] [PubMed] [Google Scholar]
- 18.Briand JP, Jonard G, Guilley H, Richards K, Hirth L. Nucleotide sequence (n = 159) of the amino-acid-accepting 3′-OH extremity of turnip-yellow-mosaic-virus RNA and the last portion of its. Eur J Biochem. 1977;72:453–463. doi: 10.1111/j.1432-1033.1977.tb11269.x. [DOI] [PubMed] [Google Scholar]
- 19.Silberklang M, Prochiantz A, Haenni AL, RajBhandary UL. Studies on the sequence of the 3′-terminal region of turnip yellow mosaic virus RNA. Eur J Biochem. 1977;72:465–478. doi: 10.1111/j.1432-1033.1977.tb11270.x. [DOI] [PubMed] [Google Scholar]
- 20.Pleij CWA, Rietveld K, Bosch L. A new principle of folding based on pseudoknotting. Nucleic Acids Res. 1985;13:1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Pleij CWA. Pseudoknots: a new motif in the RNA game. Trends Biochem Sci. 1990;15:143–147. doi: 10.1016/0968-0004(90)90214-v. [DOI] [PubMed] [Google Scholar]
- 22.ten Dam E, Pleij K, Draper D. Structural and functional aspects of RNA pseudoknots. Biochemistry. 1992;31:11665–11676. doi: 10.1021/bi00162a001. [DOI] [PubMed] [Google Scholar]
- 23.Westhof E, Jaeger L. RNA pseudoknots: structural and functional aspects. Curr Opinion Struct Biol. 1992;2:327–333. [Google Scholar]
- 24.Florentz C, Mengual R, Briand JP, Giegé R. Large-scale purification of the 3'-OH-terminal tRNA-like sequence (n = 159) of turnip yellow mosaic virus RNA. Eur J Biochem. 1982;123:89–93. doi: 10.1111/j.1432-1033.1982.tb06502.x. [DOI] [PubMed] [Google Scholar]
- 25.Florentz C, Briand JP, Romby P, Hirth L, Ebel JP, Giegé R. The tRNA-like structure of turnip yellow mosaic virus RNA: structural organization of the last 159 nucleotides from the 3′-OH terminus. EMBO J. 1982;1:269–276. doi: 10.1002/j.1460-2075.1982.tb01158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Rietveld K, Van Poelgeest R, Pleij CWA, Van Boom JH, Bosch L. The tRNA-like structure at the 3'-terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res. 1982;10:1929–1946. doi: 10.1093/nar/10.6.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Dumas P, Moras D, Florentz C, Giegé R, Verlaan P, Van Belkum A, Pleij CWA. 3-D graphics modelling of the tRNA-like 3'-end of turnip yellow mosaic virus RNA: structural and functional implications. J Biomol Struct Dyn. 1987;4:707–728. doi: 10.1080/07391102.1987.10507674. [DOI] [PubMed] [Google Scholar]
- 28.Van Belkum A, Bingkun J, Rietveld K, Pleij CWA, Bosch L. Structural similarities among valine-accepting tRNA-like structures in tymoviral RNAs and elongator tRNAs. Biochemistry. 1987;26:1144–1151. [Google Scholar]
- 29.Mans RMW, Van Steeg MH, Verlaan PWG, Pleij CWA, Bosch L. Mutational analysis of the pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. J Mol Biol. 1992;223:221–232. doi: 10.1016/0022-2836(92)90727-2. [DOI] [PubMed] [Google Scholar]
- 30.Rietveld K. Three-dimensional folding of the tRNA-like structures of some plant viral RNAs. Thesis. 1984 Leiden, the Netherlands. [Google Scholar]
- 31.Florentz C, Giegé R. Contact areas of the turnip yellow mosaic virus tRNA-like structure interacting with yeast valyl-tRNA synthetase. J Mol Biol. 1986;191:117–130. doi: 10.1016/0022-2836(86)90427-4. [DOI] [PubMed] [Google Scholar]
- 32.Westhof E, Romby P, Ehresmann C, Ehresmann B. Computer-aided structural biochemistry of ribonucleic acids. In: Beveridge D, Lavery R, editors. Theoretical biochemistry and molecular biophysics. Adenine Press; Guilderland, NY, USA: 1990. pp. 399–409. [Google Scholar]
- 33.Dock AC, Lorber B, Moras D, Pixa G, Thierry JC, Giegé R. Crystallization of transfer ribonucleic acids. Biochimie. 1984;66:179–201. doi: 10.1016/0300-9084(84)90063-4. [DOI] [PubMed] [Google Scholar]
- 34.Ducruix A, Giegé R, Rickwood D, Hames BD, editors. Crystallization of nucleic acids and proteins: A practical approach. 2nd edn. IRL Press at Oxford University Press; Oxford: 1992. p. 331. (The practical approach series). [Google Scholar]
- 35.Westhof E, Dumas P, Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985;184:119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
- 36.Giegé R, Rudinger J, Dreher T, Perret V, Westhof E, Florentz C, Ebel JP. Search of essential parameters for the aminoacylation of viral tRNA-like molecules. Comparison with canonical transfer RNAs. Biochem Biophys Acta. 1990;1050:179–185. doi: 10.1016/0167-4781(90)90163-v. [DOI] [PubMed] [Google Scholar]
- 37.Altman S. Ribonuclease P. J Biol Chem. 1990;265:20053–20056. [PubMed] [Google Scholar]
- 38.Brown JW, Pace NR. Structure and evolution of ribonuclease P RNA. Biochimie. 1991;73:689–697. doi: 10.1016/0300-9084(91)90049-7. [DOI] [PubMed] [Google Scholar]
- 39.Guerrier-Takada C, Van Belkum A, Pleij CWA, Altman S. Novel reactions of RNAase P with a tRNA-like structure in turnip yellow mosaic virus RNA. Cell. 1988;53:267–272. doi: 10.1016/0092-8674(88)90388-1. [DOI] [PubMed] [Google Scholar]
- 40.Green CJ, Vols BS, Morch MD, Joshi RL, Haenni AL. Ionic condition for the cleavage of the tRNA-like structure of turnip yellow mosaic virus by the catalytic RNA of RNAse P. J Biol Chem. 1988;263:11617–11620. [PubMed] [Google Scholar]
- 41.Mans RMW, Guerrier-Takada C, Altman S, Pleij CWA. Interaction of RNAse P from Escherichia coli with pseudoknotted structures in viral RNAs. Nucleic Acids Res. 1990;18:3479–3487. doi: 10.1093/nar/18.12.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Deutscher MP. tRNA nucleotidyl-transferase and the CCA terminus of transfer RNA. In: Jacob ST, editor. 2nd edn. vol 2. CRC Press, Inc; Boca Raton, FL, USA: 1983. pp. 159–183. (Enzymes of nucleic acid synthesis and modification). [Google Scholar]
- 43.Joshi S, Chapeville F, Haenni AL. Length requirements for tRNA specific enzymes and cleavage specificity at the 3′-end of turnip yellow mosaic virus RNA. Nucleic Acids Res. 1982;10:1947–1962. doi: 10.1093/nar/10.6.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Kern D, Giegé R, Ebel JP. Incorrect aminoacylations eatalysed by the phenylalanyl-and valyl-tRNA synthetase from yeast. Eur J Biochem. 1972;31:148–155. doi: 10.1111/j.1432-1033.1972.tb02513.x. [DOI] [PubMed] [Google Scholar]
- 45.Dreher TW, Florentz C, Giegé R. Valylation of tRNA-like transcripts from cloned cDNA of turnip yellow mosaic virus RNA demonstrate that the L-shaped region at the 3′-end of the viral RNA is not sufficient for optimal aminoacylation. Biochimie. 1988;70:1719–1727. doi: 10.1016/0300-9084(88)90030-2. [DOI] [PubMed] [Google Scholar]
- 46.Mans RMW, Verlaan PWG, Pleij CWA, Bosch L. Aminoacylation of 3′-terminal tRNA-like fragments of turnip yellow mosaic virus RNA: the influence of 5'-nonviral sequences. Biochem Biophys Acta. 1990;1050:186–192. doi: 10.1016/0167-4781(90)90164-w. [DOI] [PubMed] [Google Scholar]
- 47.Favorova OO, Fasiolo F, Keith G, Vassilenko SK, Ebel JP. Partial digestion of tRNA-aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease. Biochemistry. 1981;20:1006–1010. doi: 10.1021/bi00507a055. [DOI] [PubMed] [Google Scholar]
- 48.Florentz C, Dreher TW, Rudinger J, Giegé R. Specific valylation identity of turnip yellow mosaic virus RNA by yeast valyl-RNA synthetase is directed by the anticodon in a kinetic rather than affinity-based discrimination. Eur J Biochem. 1991;195:229–234. doi: 10.1111/j.1432-1033.1991.tb15698.x. [DOI] [PubMed] [Google Scholar]
- 49.Dreher TW, Tsai C-H, Florentz C, Giegé R. Specific valylation of turnip yellow mosaic virus RNA by wheat germ valyl-tRNA synthetase is determined by three anticodon loop nucleotides. Biochemistry. 1992;31:9183–9189. doi: 10.1021/bi00153a010. [DOI] [PubMed] [Google Scholar]
- 50.Mans RWM, Pleij CWA, Bosch L. tRNA-like structures. Structure, function and evolutionary significance. Eur J Biochem. 1991;201:303–324. doi: 10.1111/j.1432-1033.1991.tb16288.x. [DOI] [PubMed] [Google Scholar]
- 51.Fersht A. Freeman; New York, USA: 1985. Enzyme, structure and mechanism; p. 371. [Google Scholar]
- 52.Tsai CH, Dreher TW. Second-site suppressor mutations assist in studying the function of the 3'-noncoding region of turnip yellow mosaic virus RNA. J Virology. 1992;66:5190–5199. doi: 10.1128/jvi.66.9.5190-5199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Ebel JP, Giegé R, Bonnet J, Kern D, Befort N, Bollack C, Fasiolo F, Gangloff J, Dirheimer G. Factors determining the specificity of the tRNA aminoacylation reaction. Biochimie. 1973;55:547–557. doi: 10.1016/s0300-9084(73)80415-8. [DOI] [PubMed] [Google Scholar]
- 54.Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol. 1993;45:128–206. doi: 10.1016/s0079-6603(08)60869-7. [DOI] [PubMed] [Google Scholar]
- 55.Rudinger J, Florentz C, Dreher T, Giegé R. Efficient mischarging of a viral tRNA-like structure and aminoacylation of a minihelix containing a pseudoknot: histidinylation of turnip yellow mosaic virus RNA. Nucleic Acids Res. 1992;20:1865–1870. doi: 10.1093/nar/20.8.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Himeno H, Hasegawa T, Ueda T, Watanabe K, Miura K, Shimizu M. Role of the extra G-C pair at the end of the acceptor stem of tRNAHis in aminoacylation. Nucleic Acids Res. 1989;17:7855–7863. doi: 10.1093/nar/17.19.7855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Francklyn C, Schimmel P. 2nd edn. Vol. 87. 1990. Enzymatic aminoacylation of an eight-base-pair microhelix with histidine; pp. 8655–8659. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Francklyn C, Musier-Forsyth K, Schimmel P. Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. Eur J Biochem. 1992;206:315–321. doi: 10.1111/j.1432-1033.1992.tb16929.x. [DOI] [PubMed] [Google Scholar]
- 59.Riis B, Rattan SIS, Clark BFC, Merrick WC. Eukaryotic protein elongation factors. Trends Biochem Sci. 1990;15:420–424. doi: 10.1016/0968-0004(90)90279-k. [DOI] [PubMed] [Google Scholar]
- 60.Chen JM, Hall TC. Comparison of tyrosyl transfer ribonucleic acid and brome mosaic virus tyrosyl ribonucleic acid as amino acid donors in protein synthesis. Biochemistry. 1973;12:4570–4574. doi: 10.1021/bi00747a004. [DOI] [PubMed] [Google Scholar]
- 61.Hall TC, Pinck M, Duranton HM, German TL. Aminoacylation and messenger functions of eggplant mosaic virus RNA. Virology. 1979;97:354–365. doi: 10.1016/0042-6822(79)90346-5. [DOI] [PubMed] [Google Scholar]
- 62.Hall TC. Transfer RNA-like structures in viral genomes. Int Rev Cytol. 1979;60:1–26. doi: 10.1016/s0074-7696(08)61257-7. [DOI] [PubMed] [Google Scholar]
- 63.Blumenthal T, Carmichael GG. RNA replication: function and structure of ωβ-replicase. Annu Rev Biochem. 1979;48:525–548. doi: 10.1146/annurev.bi.48.070179.002521. [DOI] [PubMed] [Google Scholar]
- 64.Joshi S, Haenni AL, Hubert E, Huez G, Marbaix G. In vivo aminoacylation and ‘processing’ of turnip yellow mosaic virus RNA in Xenopus laevis oocytes. Nature. 1978;275:339–341. doi: 10.1038/275339a0. [DOI] [PubMed] [Google Scholar]
- 65.Joshi S, Chapeville F, Haenni AL. Turnip yellow mosaic virus RNA is aminoacylated in vivo in Chinese cabbage leaves. EMBO J. 1982;1:935–938. doi: 10.1002/j.1460-2075.1982.tb01274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Tsai CH, Dreher TW. Turnip yellow mosaic virus RNAs with anticodon loop substitutions that result in decreased valylation fail to replicate efficiently. J Virology. 1991;65:3060–3067. doi: 10.1128/jvi.65.6.3060-3067.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Pulikowska J, Wojtaszek P, Korek A, Michalski Z, Candresse T, Twaerdowski T. Immunochemical properties of elongation factors 1 of plant origin. Eur J Biochem. 1988;171:131–136. doi: 10.1111/j.1432-1033.1988.tb13768.x. [DOI] [PubMed] [Google Scholar]
- 68.Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Pleij CWA, Abrahams JP, Van Belkum A, Rietveld K, Bosch L. The spatial folding of the 3′ noncoding region of aminoacylatable plant viral RNAs. In: Brinton MA, Rueckert R, editors. Positive Strand RNA Viruses. 2nd edn. Vol. 54. 1987. pp. 299–316. (UCLA Symposia on Molecular and Cellular Biology, New Series). [Google Scholar]
- 70.Takamatsu NY, Watanabe Y, Meshi T, Okada Y. Mutational analysis of the pseudoknot region in the 3′-noncoding region of tobacco mosaic virus RNA. J Gen Virol. 1990;64:3686–3693. doi: 10.1128/jvi.64.8.3686-3693.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Miller WA, Bujarski JJ, Dreher TW, Hall TC. Minus-strand initiation by brome mosaic virus replicase within the 3′-tRNA-like structure of native and modified RNA templates. J Mol Biol. 1986;187:537–546. doi: 10.1016/0022-2836(86)90332-3. [DOI] [PubMed] [Google Scholar]
- 72.Blackburn EH. Telomerases. Annu Rev Biochem. 1992;61:113–129. doi: 10.1146/annurev.bi.61.070192.000553. [DOI] [PubMed] [Google Scholar]
- 73.Rao ALN, Dreher TW, Marsh LE, Hall TC. 2nd edn. Vol. 86. 1989. Telomeric function of the tRNA-like structure of brome mosaic virus RNA; pp. 5335–5339. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Morch MD, Joshi RL, Denial TM, Haenni AL. A new ‘sense’ RNA approach to block viral replication in vitro. Nucleic Acids Res. 1987;15:4123–4130. doi: 10.1093/nar/15.10.4123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Florentz C, Briand JP, Giegé R. Possible functional role of viral tRNA-like structures. FEBS Lett. 1984;176:295–300. [Google Scholar]
- 76.Strazielle C, Benoit H, Hirth L. Particularités structurales de l'acide nucléique extrait du virus de la mosaïque jaune du navet. J Mol Biol. 1965;13:735–748. [Google Scholar]
- 77.Gallie DR, Walbot V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly (A) tail in plant and animal cells. Genes Dev. 1990;4:1149–1157. doi: 10.1101/gad.4.7.1149. [DOI] [PubMed] [Google Scholar]
- 78.Gallie DR, Feder JN, Schimke RT, Walbot V. Functional analysis of the tobacco mosaic virus tRNA-like structure in cytoplasmic gene regulation. Nucleic Acids Res. 1991;19:5031–5036. doi: 10.1093/nar/19.18.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Wilson TMA. Cotranslational disassembly of tobacco mosaic virus in vitro. Virology. 1984;137:255–265. doi: 10.1016/0042-6822(84)90217-4. [DOI] [PubMed] [Google Scholar]
- 80.Singh I, Helenius A. Nucleocapsid uncoating during entry of enveloped animal RNA viruses into cells. Sem Virol. 1992;3:511–518. [Google Scholar]
- 81.Florentz C, Giegé R. tRNA-like structures in viral RNAs. In: Söll D, RajBhandary UL, editors. Transfer RNA. 2nd edn. 1993. (American Society Microbiology). in press. [Google Scholar]
- 82.Dreher TW, Hall TC. Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. J Mol Biol. 1988;201:31–40. doi: 10.1016/0022-2836(88)90436-6. [DOI] [PubMed] [Google Scholar]
- 83.Ames BN, Tsang TH, Buck M, Christman MF. 2nd edn. Vol. 80. 1983. The leader mRNA of the histidine attenuator region resembles tRNAHis; possible general regulatory implications; pp. 5240–5242. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Springer M, Graffe M, Butler JS, Grunberg-Manago M. 2nd edn. Vol. 83. 1986. Genetic definition of the translational operator of the threonine tRNA ligase gene in Escherichia coli; pp. 4384–4388. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Dardel F, Panvert M, Fayat G. Transcription and regulation of expression of the Escherichia coli methionyl-tRNA synthetase gene. Mol Gen Genet. 1990;223:121–133. doi: 10.1007/BF00315804. [DOI] [PubMed] [Google Scholar]
- 86.Graffe M, Dondon J, Caillet J, Romby P, Ehresmann C, Ehresmann B, Springer M. The specificity of translational control switched using tRNA identity rules. Science. 1992;255:994–996. doi: 10.1126/science.1372129. [DOI] [PubMed] [Google Scholar]
- 87.Moine H, Romby P, Springer M, Grunberg-Manago M, Ebel JP, Ehresmann B, Ehresmann C. Escherichia coli threonyl-tRNA synthetase and tRNAThr modulate the binding of the ribosome to the translational initiation site of the thrs mRNA. J Mol Biol. 1990;216:299–310. doi: 10.1016/S0022-2836(05)80321-3. [DOI] [PubMed] [Google Scholar]
- 88.Roberts RJ. Staphylococcal transfer ribonucleic acids. II. Sequence analysis of isoaccepting glycine transfer ribonucleic acids Ia and Ib from Staphylococcus epidermidis Texas 26. J Biol Chem. 1974;249:4787–4796. [PubMed] [Google Scholar]
- 89.Baron C, Westhof E, Böck A, Giegé R. Solution structure of selenocysteine inserting tRNASec from Escherichia coli. Comparison with canonical tRNASer. J Mol Biol. 1993;231:274–292. doi: 10.1006/jmbi.1993.1282. [DOI] [PubMed] [Google Scholar]
- 90.Sturchler C, Westhof E, Carbon P, Krol A. Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNASec. Nucleic Acids Res. 1993;21:1073–1079. doi: 10.1093/nar/21.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Arcari P, Brownlee GG. The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. Nucleic Acids Res. 1980;8:5207–5212. doi: 10.1093/nar/8.22.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.de Bruijn MHL, Klug A. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire ‘dihydrouridine’ loop and stem. EMBO J. 1983;2:1309–1321. doi: 10.1002/j.1460-2075.1983.tb01586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA. 2nd edn. Vol. 84. 1987. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms; pp. 1324–1328. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Hou YM, Schimmel P. Novel transfer RNAs that are active in E coli. Biochemistry. 1992;31:4157–4160. doi: 10.1021/bi00132a001. [DOI] [PubMed] [Google Scholar]
- 95.Pan T, Uhlenbeck OC. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+ Biochemistry. 1992;31:3887–3895. doi: 10.1021/bi00131a001. [DOI] [PubMed] [Google Scholar]