Abstract
Human coronaviruses (HCV) are ubiquitous pathogens which cause respiratory, gastrointestinal, and possibly neurological disorders. To better understand the molecular biology of the prototype HCV-229E strain, the complete nucleotide sequence of the membrane protein (M) gene was determined from cloned cDNA. The open reading frame is preceded by a consensus transcriptional initiation sequence UCUAAACU, identical to the one found upstream of the N gene. The M gene encodes a 225-amino acid polypeptide with a molecular weight (MW) of 25,822, slightly higher than the apparent MW of 19,000–22,000 observed for the unprocessed M protein obtained after in vitro translation and immunoprecipitation. The M amino acid sequence presents a significant degree of homology (38%) with its counterpart of transmissible gastroenteritis coronavirus (TGEV). The M protein of HCV-229E is highly hydrophobic and its hydropathicity profile shows a transmembranous region composed of three major hydrophobic domains characteristic of a typical coronavirus M protein. About 10% (20 amino acids) of the HCV-229E M protein constitutes a hydrophilic and probably external portion. One N-glycosylation and three potential O-glycosylation sites are found in this exposed domain.
References
- 1.Macnaughton M.R., Madge M.H., Reed S.E. Infect. Immun. 1981;33:734–737. doi: 10.1128/iai.33.3.734-737.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.McIntosh K., Chao R.K., Krause H.E., Wasil R., Mocega H.E., Mufson M.A. J. Infect. Dis. 1974;139:502–510. doi: 10.1093/infdis/130.5.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wege H., Siddell S., Ter Mellen V. Curr. Top. Mlcrobiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
- 4.Resta S., Luby J.P., Rosenfeld C.R., Siegel J.D. Science. 1985;229:978–981. doi: 10.1126/science.2992091. [DOI] [PubMed] [Google Scholar]
- 5.Tanaka R., Iwasaki Y., Koprowski H. J. Neurol. Sci. 1976;28:121–126. doi: 10.1016/0022-510X(76)90053-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Burks J.S., DeVald B.L., Jankovsky L.D., Gerdes J.C. Science. 1980;209:933–934. doi: 10.1126/science.7403860. [DOI] [PubMed] [Google Scholar]
- 7.Salmi A., Ziola B., Hovl T., Reunanen M. Neurology. 1982;32:292–295. doi: 10.1212/wnl.32.3.292. [DOI] [PubMed] [Google Scholar]
- 8.Macnaughton M.R., Madge M.H. J. Gen. Virol. 1978;39:497–504. doi: 10.1099/0022-1317-39-3-497. [DOI] [PubMed] [Google Scholar]
- 9.Weiss S.R., Leibowitz J.L. In: Biochemistry and Biology of Coronaviruses. ter Meulen V., Siddell S., Wege H., editors. Plenum; New York: 1981. pp. 245–260. [Google Scholar]
- 10.Sturman L.S., Ricard C.S., Holmes K.V. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Hierholzer J.C. Virology. 1976;75:155–165. doi: 10.1016/0042-6822(76)90014-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Macnaughton M.R. Arch. Virol. 1980;63:75–80. doi: 10.1007/BF01320763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Schmidt O.W., Kenny G.E. Infect. Immun. 1982;35:515–522. doi: 10.1128/iai.35.2.515-522.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Arpin, N., and Talbot, P. J., Adv. Exp. Biol. Med., in press.
- 15.Schreiber S.S., Kamahora T., Lai M.M.C. Virology. 1989;169:142–151. doi: 10.1016/0042-6822(89)90050-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kamahora T., Soe L.H., Lai M.M.C. Virus Res. 1989;12:1–9. doi: 10.1016/0168-1702(89)90048-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Hattori M., Sakaki Y. Anal. Biochem. 1986;152:232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
- 18.Shieh C.-K., Soe L.H., Making S., Chang M.-F., Stohlman S.A., Lai M.M.C. Virology. 1987;156:321–330. doi: 10.1016/0042-6822(87)90412-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Armstrong J., Niemann H., Smeekens S., Rot-Fier P., Warren G. Nature (London) 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Laude H., Rasschaert D., Huet J.-C. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
- 21.Lapps W., Hogue B.G., Brian D.A. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Pfleiderer M., Skinner M.A., Siddell S.G. Nucleic Acids Res. 1986;14:6338. doi: 10.1093/nar/14.15.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Boursnell M.E.G., Brown T.D.K., Binns M.M. Virus Res. J. 1984:303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Macnaughton M.R. In: Biochemistry and Biology of Coronaviruses. ter Meulen V., Siddell S., Wege H., editors. Plenum Press; New York: 1981. pp. 19–29. [Google Scholar]
- 25.Kapke P.A., Tung F.Y.T., Hogue B.G., Brian D.A., Woods R.D., Wesley R. Virology. 1988;165:367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Spaan W., Cavanagh D., Horzinek M.C. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- 27.Fleming J.O., Shubin R.A., Sussman M.A., Casteel N., Stohlman S.A. Virology. 1989;168:162–167. doi: 10.1016/0042-6822(89)90415-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Kyte J., Doolittle R.F. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]