Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;182(1):336–345. doi: 10.1016/0042-6822(91)90677-4

The N-terminal heptad repeat region of reovirus cell attachment protein σ1 is responsible for σ1 oligomer stability and possesses intrinsic oligomerization function

Gustavo Leone a, Roy Duncan a, David CW Mah a,1, Angela Price a, LWilliam Cashdollar , Patrick WK Lee a,2
PMCID: PMC7130816  PMID: 2024469

Abstract

The oligomerization domain of the reovirus cell attachment protein (σ1) was probed using the type 3 reovirus of synthesized in vitro. Trypsin cleaved the α1 protein (49K molecular weight) approximately in the middle and yielded a 26K N-terminal fragment and a 23K C-terminal fragment. Under conditions which allowed for the identification of intact σ1 in the oligomeric form (∼200K) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the N-terminal 26K fragment was found to exist as stable trimers (80K) and, to a less extent, as dimers (54K), whereas the C-terminal fragment remained in the monomeric form. A polypeptide (161 amino acids) containing the N-terminal heptad repeat region synthesized in vitro was capable of forming stable dimers and trimers. Using various criteria, we demonstrated that the stability of the intact σ1 oligomer is conferred mainly by the N-terminal heptad repeat region. Our results are summarized in a model in which individual heptad repeats are held together in a three-stranded α-helical coiled-coil structure via both hydrophobic and electrostatic interactions.

References

  1. Banerjea A.C., Brechling K.A., Ray C.A., Erickson H., Pickup D.T., Joklik W.K. High-level synthesis of biologically active reovirus protein σ1 in a mammalian expression vector system. Virology. 1988;167:601–612. [PubMed] [Google Scholar]
  2. Banerjea A.C., Joklik W.K. Reovlrus protein σ1 translated in vitro, as well as truncated derivations of it that lack up to two-thirds of its C-terminal portion, exists as two major tetrameric molecular species that differ in electrophoretic mobility. Virology. 1990;179:460–462. doi: 10.1016/0042-6822(90)90315-i. [DOI] [PubMed] [Google Scholar]
  3. Bassel-Duby R., Jayasuriya A., Chatterjee D., Sonenberg N., Maizel J.V., Jr., Fields B.N. Sequence of reovirus hemagglutinin predicts a coiled-coil structure. Nature (London) 1985;315:421–423. doi: 10.1038/315421a0. [DOI] [PubMed] [Google Scholar]
  4. Bassel-Duby R., Nibert M.L., Homcy C.J., Fields B.N., Sawutz D.G. Evidence that the σ1 protein of reovirus serotype 3 is a multimer. J. Virol. 1987;61:1834–1841. doi: 10.1128/jvi.61.6.1834-1841.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burstin S., Spriggs D.R., Fields B.N. Evidence for functional domains on the reovirus type 3 hemagglutinin. Virology. 1982;117:146–155. doi: 10.1016/0042-6822(82)90514-1. [DOI] [PubMed] [Google Scholar]
  6. Cashdollar L.W., Blair P., van Dyne S. Identification of the σ1 S protein in reovirus serotype 2-infected cells with antibody prepared against a bacterial fusion protein. Virology. 1989;168:183–186. doi: 10.1016/0042-6822(89)90420-0. [DOI] [PubMed] [Google Scholar]
  7. Delmas B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 1990;64:5367–5375. doi: 10.1128/jvi.64.11.5367-5375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devaux C., Adrian M., Berthet-Colominas C., Cusack S., Jacrot B. Structure of adenovirus fibre. I. Analysis of crystals of fibre from adenovirus serotypes 2 and 5 by electron microscopy and x-ray crystallography. J. Mol. Biol. 1990;215:567–588. doi: 10.1016/S0022-2836(05)80169-X. [DOI] [PubMed] [Google Scholar]
  9. Doms R.W., Keller D.S., Helenius A., Balch N.E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 1987;105:1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duncan R., Horne D., Cashdollar L.W., Joklik W.K., Lee P.W.K. Identification of conserved domains in the cell attachment proteins of the three serotypes of reovirus. Virology. 1990;174:399–409. doi: 10.1016/0042-6822(90)90093-7. [DOI] [PubMed] [Google Scholar]
  11. Fraser R.D.B., Furlong D.B., Trus B.L., Nibert M.L., Fields B.N., Steven A.C. Molecular structure of the cell-attachment protein of reovirus: Correlation of computer-processed electron micrographs with sequence-based predictions. J. Virol. 1990;64:2990–3000. doi: 10.1128/jvi.64.6.2990-3000.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Furlong D.B., Nibert M.L., Field B.N. Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles. J. Virol. 1988;62:246–256. doi: 10.1128/jvi.62.1.246-256.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kreis T.E., Lodish H.F. Oligomerization is essential for transport of vesicular stomatitis viral glycoproteins to the cell surface. Cell. 1986;46:929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lee P.W.K., Hayes E.C., Joklik W.K. Protein σ1 is the reovirus cell attachment protein. Virology. 1981;108:156–163. doi: 10.1016/0042-6822(81)90535-3. [DOI] [PubMed] [Google Scholar]
  16. Mah D.C.W., Leone G., Jankowski J.M., Lee P.W.K. The N-terminal quarter of reovirus cell attachment protein σ1 possesses intrinsic virion-anchoring function. Virology. 1990;179:95–103. doi: 10.1016/0042-6822(90)90278-y. [DOI] [PubMed] [Google Scholar]
  17. Masri S.A., Nagata L., Mah D.C.W., Lee P.W.K. Functional expression in Escherichia coli of cloned reovirus S1 gene encoding the viral cell attachment protein σ1. Virology. 1986;149:83–90. doi: 10.1016/0042-6822(86)90089-9. [DOI] [PubMed] [Google Scholar]
  18. McMichael I.C., Ou J.T. Metal ion dependence of a heat-modifiable protein from the outer membrane of Escherichia coli upon sodium dodecyl sulfate-gel electrophoresis. J. Bacteriol. 1977;132:314–320. doi: 10.1128/jb.132.1.314-320.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nagata L., Masri S.A., Pon R.T., Lee P.W.K. Analysis of functional domains on reovirus cell attachment protein σ1 using cloned Sl gene deletion mutants. Virology. 1987;160:162–168. doi: 10.1016/0042-6822(87)90056-0. [DOI] [PubMed] [Google Scholar]
  20. Nibert M.L., Dermody T.S., Fields B.N. Structure of the reovirus cell attachment protein: A model for the domain organization of σ1. J. Virol. 1990;64:2976–2989. doi: 10.1128/jvi.64.6.2976-2989.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sharpe A.H., Fields B.N. Pathogenesis of viral infections. Basic concepts derived from the reovirus model. N. Engl. J. Med. 1985;312:486–497. doi: 10.1056/NEJM198502213120806. [DOI] [PubMed] [Google Scholar]
  22. van Oostrum J., Smith P.R., Mohraz M., Burnett R.M. The structure of the adenovirus capsid. III. Hexon packing determined from electron micrographs of capsid fragments. J. Mol. Biol. 1987;198:73–89. doi: 10.1016/0022-2836(87)90459-1. [DOI] [PubMed] [Google Scholar]
  23. Weiss C.D., Levy J.A., White J.M. Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. J. Virol. 1990;64:5674–5677. doi: 10.1128/jvi.64.11.5674-5677.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wiley D.C., Wilson I.A., Skehel J.J. Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature (London) 1981;289:373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]
  25. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature (London) 1981;289:368–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  26. Yeung M.C., Lim D., Duncan R., Shahrabadi M.S., Cashdollar L.W., Lee P.W.K. The cell attachment proteins of type 1 and type 3 reovirus are differentially susceptible to trypsin and chymotrypsin. Virology. 1989;170:62–70. doi: 10.1016/0042-6822(89)90352-8. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES