Abstract
The second smallest subgenomic messenger RNA, mRNA5, of the coronavirus infectious bronchitis virus includes in its “5′ unique region” two separate open reading frames (5a and 5b), whose coding function has not so far been established, and thus it may represent a dicistronic messenger RNA. We report here that two polypeptides with the sizes expected for the 5a and 5b products can be synthesised by in vitro translation of a single artificial mRNA containing both the 5a and 5b ORFs. To establish whether these polypeptides represent genuine virus gene products, both the 5a and 5b coding sequences were expressed as bacterial fusion proteins, and these were used to raise monospecific antisera. Antisera raised against both the 5a and 5b-specific sequences recognized specifically proteins of the expected size in infectious bronchitis virus-infected chicken kidney and Vero cells, indicating that 5a and 5b do represent genuine virus genes, and suggesting that mRNA5 is indeed functionally dicistronic.
References
- 1.Bellini W.J., Englund G., Rozenblatt S., Arnheiter H., Richardson C.D. J. Virol. 1985;53:908–919. doi: 10.1128/jvi.53.3.908-919.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Bos J.L., Polder L.J., Bernards R., Schrier P.I., Van Den Elsen P.J., Van Der Eb A.J., Van Ormondt H. Cell. 1981;27:121–131. doi: 10.1016/0092-8674(81)90366-4. [DOI] [PubMed] [Google Scholar]
- 3.Boursnell M.E.G., Brown T.D.K. Gene. 1984;29:87–92. doi: 10.1016/0378-1119(84)90169-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
- 5.Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. EMBO. J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Brierley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Rolley N.J., Brown T.D.K., Inglis S.C. In: Coronaviruses and their Diseases. Cavanagh D., Brown T.D.K., editors. Vol. 276. Plenum Press; New York: 1990. pp. 175–281. (Advances in Experimental Medicine and Biology). [Google Scholar]
- 7.Brierley I., Digard P., Inglis S.C. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Budzilowicz C.Z., Weiss S.R. Virology. 1987;157:509–515. doi: 10.1016/0042-6822(87)90293-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Cavanagh D., Brian D.A., Enjuanes L., Holmes K.V., Lai M.M.C., Laude H., Siddell S.G., Spaan W., Taguchi F., Talbot P.J. Vol. 176. 1990. pp. 306–307. (Virology). [DOI] [PubMed] [Google Scholar]
- 10.Contreras R., Cheroutre H., Degrave W., Fiers W. Nucleic Acids Res. 1982;10:6353–6362. doi: 10.1093/nar/10.20.6353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Curran J.C., Richardson C.D., Kolakofsky D. J. Virol. 1986;57:684–687. doi: 10.1128/jvi.57.2.684-687.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Dorner A.J., Semler B.L., Jackson R.J., Hanecak R., Duprey E., Wimmer E. J. Virol. 1984;50:507–514. doi: 10.1128/jvi.50.2.507-514.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Giorgi C., Blumberg B.M., Kolakofsky D. Cell. 1983;35:829–836. doi: 10.1016/0092-8674(83)90115-0. [DOI] [PubMed] [Google Scholar]
- 14.Herman R.C. Trends Biol. Sci. 1989;14:219–222. doi: 10.1016/0968-0004(89)90030-3. [DOI] [PubMed] [Google Scholar]
- 15.Inglis S.C., McGeoch D.J., Mahy B.W.J. Virology. 1977;78:522–536. doi: 10.1016/0042-6822(77)90128-3. [DOI] [PubMed] [Google Scholar]
- 16.Kozak M. Nucleic Acids Res. 1987;15:8125–8149. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kozak M. J. Mol. Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Krieg P.A., Melton D.A. Nucleic Acids Res. 1984;12:7057–7071. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Leibowitz J.L., Perlman S., Weinstock G., Devries J.R., Budzilowicz C., Weissemann J.M., Weiss S.R. Virology. 1988;164:156–164. doi: 10.1016/0042-6822(88)90631-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Liu D.X., Cavanagh D., Green P., Inglis S.C. Virology. 1991;184:531–544. doi: 10.1016/0042-6822(91)90423-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Lomniczi B. J. Gen. Virol. 1977;36:531–533. doi: 10.1099/0022-1317-36-3-531. [DOI] [PubMed] [Google Scholar]
- 22.Russel M., Kidd S., Kelley M.R. Gene. 1986;45:333–338. doi: 10.1016/0378-1119(86)90032-6. [DOI] [PubMed] [Google Scholar]
- 23.Schochetman G., Stevens R.H., Simpson R.W. Virology. 1977;77:772–782. doi: 10.1016/0042-6822(77)90498-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Sedman S.A., Mertz J.E. J. Virol. 1988;62:954–961. doi: 10.1128/jvi.62.3.954-961.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Skinner M.A., Ebner D., Siddell S.G. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
- 26.Smith A.R., Boursnell M.E.G., Binns M.M., Brown T.D.K., Inglis S.C. J. Gen. Virol. 1990;71:3–11. doi: 10.1099/0022-1317-71-1-3. [DOI] [PubMed] [Google Scholar]
- 27.Stanley K.K., Luzio J.P. EMBO J. 1984;3:1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Stern D.F., Kennedy S.I.T. J. Virol. 1980;34:665–674. doi: 10.1128/jvi.34.3.665-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Stern D.F., Kennedy S.I.T. J. Virol. 1980;36:440–449. doi: 10.1128/jvi.36.2.440-449.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Stern D.F., Sefton B.M. J. Virol. 1984;50:22–29. doi: 10.1128/jvi.50.1.22-29.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Williams M.A., Lamb R.A. J. Virol. 1989;63:28–35. doi: 10.1128/jvi.63.1.28-35.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Wong T.C., Wipf G., Hirano A. Virology. 1987;157:497–508. doi: 10.1016/0042-6822(87)90292-3. [DOI] [PubMed] [Google Scholar]