Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;186(2):676–683. doi: 10.1016/0042-6822(92)90034-M

The 9-kDa hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated

Frank YT Tung 1,1, Sushma Abraham 1,2, Manjiri Sethna 1, Shan-Ling Hung 1,3, Phiroze Sethna 1, Brenda G Hogue 1,4, David A Brian 1,5
PMCID: PMC7130826  PMID: 1310191

Abstract

The open reading frame potentially encoding a 78 amino acid, 9101 Da hydrophobic protein (HP) and, mapping at the 3′ end of the porcine transmissible gastroenteritis coronavirus (TGEV) genome, was shown to be expressed during virus replication. The cloned HP gene was placed in a plasmid under control of the T7 RNA polymerase promoter and in vitro translation of transcripts generated in vitro yielded a 9.1-kDa protein that was immunoprecipitable with porcine hyperimmune anti-TGEV serum. Antiserum raised in rabbits against a 31 amino acid synthetic polypeptide that represented the central hydrophilic region of HP specifically immunoprecipitated HP from TGEV-infected cells. HP was further shown to become associated with microsomal membranes during synthesis in vitro and was found to be closely associated with the endoplasmic reticulum and cell surface membranes in infected cells. The intracellular location of HP suggests that it may play a role in the membrane association of replication complexes or in virion assembly.

References

  1. Abraham S., Kienzle T.E., Lapps W.E., Brian D.A. Sequence and expression analysis of potential nonstructural proteins of 4.9, 4.8, 12.7 and 9.5 kilodaltons encoded between the spike and membrane protein genes of the bovine coronavirus. Virology. 1990;177:488–495. doi: 10.1016/0042-6822(90)90513-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson D.J., Blobel G. Immunoprecipitation of proteins from cell-free translation. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; San Diego: 1983. pp. 111–120. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  3. Armstrong J., Smeekens S., Rottier P. Sequence of the nucleocapsid gene from murine coronavirus MHV-A59. Nucleic Acids Res. 1983;11:883–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boursnell M.E.G., Binns M.M., Foulds I.J., Brown T.D.K. Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. J. Gen. Virol. 1985;66:573–580. doi: 10.1099/0022-1317-66-3-573. [DOI] [PubMed] [Google Scholar]
  5. Boursnell M.E.G., Binns M.M., Brown T.D.K. Sequencing of IBV genomic RNA: Three open reading frames in the 5′ “unique” region of mRNA D. J. Gen. Virol. 1985;66:2253–2258. doi: 10.1099/0022-1317-66-10-2253. [DOI] [PubMed] [Google Scholar]
  6. Boursnell M.E.G., Brown T.D.K. Sequencing of coronavirus IBV genomic RNA: A 195-base open reading frame encoded by mRNA B. Gene. 1984;29:87–92. doi: 10.1016/0378-1119(84)90169-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Britton P., Carmenes R.S., Page K.W., Garwes D.J., Parra F. Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
  9. De Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.I.M. Sequence analysis of the Tend of the feline coronavirus FIPV 79-1146 genome: Comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dennis D.E., Brian D.A. RNA-dependent RNA polymerase activity in coronavirus-infected cells. J. Virol. 1982;42:153–164. doi: 10.1128/jvi.42.1.153-164.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dubois-dalco M., Holmes K.V., Rentier B. Assembly of coronaviridae. In: Kingsburg D.W., editor. Assembly of enveloped RNA viruses. Springer-Verlag; New York: 1984. pp. 100–119. [Google Scholar]
  12. Fujiki Y., Hubbard A.L., Fowler S., Lazarow P.B. Isolation of intracellular membranes by means of sodium carbonate treatment: Application to endoplasmic reticulum. J. Cell. Biol. 1982;93:97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garwes D.J., Stewart F., Britton P. The polypeptide of M, 14000 of porcine transmissible gastroenteritis virus: Gene assignment and intracellular location. J. Gen. Virol. 1989;70:2495–2499. doi: 10.1099/0022-1317-70-9-2495. [DOI] [PubMed] [Google Scholar]
  14. Guilian G.G., Shanahan M.F., Graham J.M., Moss R.L. Vol. 44. 1985. Resolution of low molecular weight polypeptides in a nonurea sodium dodecyl sulfate slab polyacrylamide gel system; p. 686. (Fed. Proc.). [Google Scholar]
  15. Jacobs L., van der Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaariainen L., Virtanen I., Saraste J., Keranen S. Transport of virus membrane glycoproteins, use of temperaturesensitive mutants and organelle-specific lectins. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; San Diego: 1983. pp. 453–456. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  17. Kamahora T., Soe L.H., Lai M.M.C. Sequence analysis of nucleocapsid gene and leader RNA of human coronavirus OC43. Virus Res. 1989;12:1–9. doi: 10.1016/0168-1702(89)90048-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kapke P.A., Tung F.Y.T., Brian D.A. Nucleotide sequence between the peplomer and matrix protein genes of the porcine transmissible gastroenteritis coronavirus identifies three large open reading frames. Virus Genes. 1988;2:293–294. doi: 10.1007/BF00125345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kapke P.A., Tung F.Y.T., Hogue B.G., Brian D.A., Woods R.D., Wesley R.D. The amino terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988;165:367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kemeny L.J. Antibody responses in pigs inoculated with transmissible gastroenteritis virus and cross reactions among ten isolates. Can. J. Comp. Med. 1976;40:209–214. [PMC free article] [PubMed] [Google Scholar]
  22. Kozak M. The scanning model for translation: An update. J. Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  24. Lapps W.E., Hogue B.G., Brian D.A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rasschaert D., Gelfi J., Laude H. Enteric coronavirus TGEV: Partial sequence of the genome RNA, its organization and expression. Biochimie. 1987;69:591–600. doi: 10.1016/0300-9084(87)90178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sambrook J., Fritsch E.F., Maniatis T. 2nd ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1989. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  27. Scheele G. Methods for the study of protein translocation across the RER membrane using the reticulocyte translation lysate system and canine pancreatic microsomal membranes. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; San Diego: 1983. pp. 94–111. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  28. Schreiber S.S., Kamahora T., Lai M.M.C. Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E. Virology. 1989;169:142–151. doi: 10.1016/0042-6822(89)90050-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sefton B.M., Buss J.E. The covalent modification of eukaryotic proteins with lipids. J. Cell Biol. 1987;140:1449–1453. doi: 10.1083/jcb.104.6.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sethna P.B., Hung S.-L., Brian D.A. Vol. 86. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons; pp. 5626–5630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Skinner M.A., Siddell S.G. Coronavirus 1HM: Nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Res. 1983;11:5045–5054. doi: 10.1093/nar/11.15.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Skinner M.A., Siddell S.G. Coding sequence of coronavirus MHV-1HM mRNA 4. J. Gen. Virol. 1985;66:593–596. doi: 10.1099/0022-1317-66-3-593. [DOI] [PubMed] [Google Scholar]
  33. Skinner M.A., Ebner D., Siddell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
  34. Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Vlrol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  35. Stohlman S.A., Baric R.S., Nelson G.N., Soe L.H., Welter L.M., Deans R.J. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 1988;62:4288–4295. doi: 10.1128/jvi.62.11.4288-4295.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tooze J., Tooze S., Warren G. Replication of coronavirus MHV-A59 in sac cells: Determination of the first site of budding of progeny virions. Eur. J. Cell. Biol. 1984;33:281–294. [PubMed] [Google Scholar]
  37. Vennema H., Heunen L., Zuderveld A., Horzinek M.C., Spaan W.J.M. Intracellular transport of recombinant coronavirus spike proteins: Implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 1986;14:4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; San Diego: 1983. pp. 84–93. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES