Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2005 Mar 17;206(1):216–226. doi: 10.1016/S0042-6822(95)80036-0

Characterization of defective-interfering RNAs of rubella virusgenerated during serial undiluted passage

Cynthia A Derdeyn 1,1, Teryl K Frey 1,2
PMCID: PMC7130850  PMID: 7831776

Abstract

During serial undiluted passage of rubella virus (RUB) in Vero cells, two species of defective-interfering (DI) RNAs of approximately 7000 and 800 nucleotides (nts) in length were generated (Frey, T. K., and Hemphill, M. L., Virology 164, 22–29, 1988). In this study, these DI RNAs were characterized by molecular cloning, hybridization with probes of defined sequence, and primer extension. The 7000-nt DI RNA species were found to be authentic DI RNAs which contain a single 2500- to 2700-nt deletion in the structural protein open reading frame (ORF) region of the genome. The 800-nt RNAs were found to be subgenomic DI RNAs synthesized from the large DI RNA templates. Analysis of the extent of the deletions using a reverse-transcription-PCR protocol revealed that the 3′ end of the deletions did not extend beyond the 3′ terminal 244 nts of the genome. The 5′ end of the deletions did not extend into the nonstructural protein ORF; however, DI RNAs in which the subgenomic start site was deleted were present. Following serial undiluted passage of seven independent stocks of RUB, this was the only pattern of DI RNAs generated. DI RNAs of 2000 to 3000 nt in length were the majority DI RNA species in a persistently infected line of Vero cells, showing that other types of RUB DI RNAs can be generated and selected. However, when supernatant from the persistently infected cells was passaged, the only DI RNAs present after two passages were 7000 nts in length, indicating that this species has a selective advantage over other types of DI RNAs during serial passage.

References

  1. Abernathy E.S., Wang C-Y., Frey T.K. Effect of antiviral antibody on maintenance of long-term rubella virus persistent infection in Vero cells. J. Virol. 1990;64:5183–5187. doi: 10.1128/jvi.64.10.5183-5187.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen A.S., Pettersson A.F., Kjeldsen T.B. A fast and simple technique for sequencing plasmid DNA with sequenase using heat denaturation. BioTechniques. 1992;13:678–680. [PubMed] [Google Scholar]
  3. Bohn E.M., Van Alstyne D. The generation of defectiveinterfering rubella virus particles. Virology. 1981;111:549–554. doi: 10.1016/0042-6822(81)90356-1. [DOI] [PubMed] [Google Scholar]
  4. Dominguez G., Wang C-Y., Frey T.K. Sequence of the genome RNA of rubella virus: Evidence for genetic rearrangement during Togavirus evolution. Virology. 1990;177:225–238. doi: 10.1016/0042-6822(90)90476-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F. Classification and nomenclature of viruses: Fifth report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 1991;2:119. [Google Scholar]
  6. Frey T.K., Mark L.D., Hemphill M.L., Dominguez G. Molecular cloning and sequencing of the region of the rubella virus genome coding for glycoprotein E1. Virology. 1986;154:228–232. doi: 10.1016/0042-6822(86)90446-0. [DOI] [PubMed] [Google Scholar]
  7. Frey T.K., Hemphill M.L. Generation of defective-interfering particles by rubella virus in Vero cells. Virology. 1988;164:22–29. doi: 10.1016/0042-6822(88)90615-0. [DOI] [PubMed] [Google Scholar]
  8. Frey T.K., Mark L.D., Sanchez A., Simmons R.B. Identification of the 5′ end of the rubella virus subgenomic RNA. Virology. 1989;168:191–194. doi: 10.1016/0042-6822(89)90422-4. [DOI] [PubMed] [Google Scholar]
  9. Frey T.K. The molecular biology of rubella virus. Adv. Virus Res. 1994;44:69–160. doi: 10.1016/S0065-3527(08)60328-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. de Groot R.J, van der Most R.G., Spaan W.J. The fitness of defective interfering murine coronavirus D1-a and its derivatives is decreased by nonsense and frameshift mutations. J. Virol. 1992;66:5898–5905. doi: 10.1128/jvi.66.10.5898-5905.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haltiner M., Kempe T., Tijan R. A novel strategy for constructing clustered point mutations. Nucleic Acids Res. 1985;13:1015–1026. doi: 10.1093/nar/13.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hemphill M.L., Forng R.Y., Abernathy E.A., Frey T.K. Time-course of virus-specific macromolecular synthesis in rubella virus infected vero cells. Virology. 1988;162:65–75. doi: 10.1016/0042-6822(88)90395-9. [DOI] [PubMed] [Google Scholar]
  13. Makino S., Shieh C.K., Soe L.H., Baker S.C., Lai M.M.C. Primary structure and translation of a defective interfering RNA of murine coronavirus. Virology. 1988;166:550–560. doi: 10.1016/0042-6822(88)90526-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Makino S., Yokomori K., Lai M.M.C. Analysis of efficiently packaged defective interfering RNAs of murine coronavirus: Localization of a possible RNA packaging signal. J. Virol. 1990;64:6045–6053. doi: 10.1128/jvi.64.12.6045-6053.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakhasi H.L., Rouault T.A., Haile D.J., Liu T.Y., Klausner R.D. Specific high affinity binding of host cell proteins to the 3′ region of rubella virus RNA. The New Biologist. 1990;2:255–264. [PubMed] [Google Scholar]
  16. Norval M. The mechanism of persistence of rubella virus in LLC-MK2 cells. J. Gen. Virol. 1979;43:289–298. doi: 10.1099/0022-1317-43-2-289. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sawicki S.G., Sawicki D.L., Kaariainen L., Keranen S. A Sindbis virus mutant temperature sensitive in the regulation of minus strand RNA synthesis. Virology. 1981;115:161–172. doi: 10.1016/0042-6822(81)90098-2. [DOI] [PubMed] [Google Scholar]
  19. Schlesinger S. The generation and amplification of defective interfering RNAs. In: Domingo E., Holland J.J., Ahlquist P., editors. Vol. 2. CRC press; New York: 1988. pp. 167–185. (RNA Genetics). [Google Scholar]
  20. Strauss E.G., Strauss J.H. Structure and replication of the alphavirus genome. In: Schlesinger S., Schlesinger M.J., editors. Togaviridae and Flaviviridae. Plenum Press; Boca Raton, FL: 1986. pp. 35–90. [Google Scholar]
  21. Terry G.M., Ho-Terry L., Cohen A., Londesborough P. Rubella virus RNA: Effect of high multiplicity passage. Arch. Virol. 1985;86:29–36. doi: 10.1007/BF01314111. [DOI] [PubMed] [Google Scholar]
  22. Wang C-Y., Dominguez G., Frey T.K. Construction of rubella virus genome-length cDNA clones and synthesis of infectious RNA transcripts. J. Virol. 1994;68:3550–3557. doi: 10.1128/jvi.68.6.3550-3557.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES