Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;40(4):1030–1038. doi: 10.1016/0042-6822(70)90149-2

Electron microscopic observations of visna virus-infected cell cultures

Joe E Coward 1, Donald H Harter 1,2, Councilman Morgan 1
PMCID: PMC7130857  PMID: 4194173

Abstract

Electron microscopic observations of three cell lines infected with visna virus revealed two types of extracellular particles. The smaller of these was 65–110 mμ in diameter and contained a 20–30 mμ electron-dense core. Ordered arrays of the latter type of particle occurred rarely in the cytoplasm. After cesium chloride density gradient centrifugation of the virus, the band that contained maximal infectivity was composed of numerous particles with osmiophilic cores similar to those found in infected cell cultures. This finding suggests that such particles represent the infective agent. The second type of extracellular particle was larger (100–140 mμ in diameter), lacked an electron-dense core, and contained material similar in appearance to cellular cytoplasm. This form appeared to develop by budding from the cell surface.

Footnotes

Supported by Public Health Service Grants NB 06989 from the National Institute of Neurological Diseases and AI 06814 from the National Institute of Allergy and Infectious Diseases, Grant GB 6013 from the National Science Foundation, research contract No. DADA 17-67-C-7141 from the U. S. Army Medical Research and Development Command, Department of the Army, and a gift from the Miles Hodson Vernon Foundation, Inc.

References

  1. Acheson N.H., Tamm I. Replication of Semliki forest virus: an electron microscopic study. Virology. 1967;32:128–143. doi: 10.1016/0042-6822(67)90261-9. [DOI] [PubMed] [Google Scholar]
  2. Bablanian R., Eggers H.J., Tamm I. Studies on the mechanism of poliovirusinduced cell damage. 1. The relation between poliovirus-induced metabolic and morphological alterations in cultured cells. Virology. 1965;26:100–113. doi: 10.1016/0042-6822(65)90030-9. [DOI] [PubMed] [Google Scholar]
  3. Becker W.B., McIntosh K., Dees J.H., Chanock R.M. Morphogenesis of avian infectious bronchitis virus and a related human virus (strain 229E) J. Virol. 1967;1:1019–1027. doi: 10.1128/jvi.1.5.1019-1027.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dalton A.J. An electron microscopic study of a virus-induced murine sarcoma (Moloney) Natl. Cancer Inst. Monograph. 1966;22:143–168. [PubMed] [Google Scholar]
  5. Dalton A.H., Law L.W., Moloney J.B., Manaker R.A. An electron microscopic study of a series of murine lymphoid neoplasms. J. Natl. Cancer Inst. 1961;27:747–791. [PubMed] [Google Scholar]
  6. DeHarven E. Ultrastrusural studies on three different types of mouse leukemia: A review. In: Dalton A.J., Haguenau F., editors. Tumors Induced by Viruses: Ultrastructural Studies. Academic Press; New York: 1962. pp. 183–206. [Google Scholar]
  7. DeHarven E., Friend C. Electron microscope study of a cell-free induced leukemia of the mouse: A preliminary report. J. Biophys. Biochem. Cytol. 1958;4:151–156. doi: 10.1083/jcb.4.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeHarven E., Friend C. Further electron microscopic studies of a mouse leukemia induced by cell-free filtrates. J. Biophys. Biochem. Cytol. 1960;7:747–752. doi: 10.1083/jcb.7.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeHarven E., Friend C. Origin of the viremia in murine leukemia. Natl. Cancer Inst. Monograph. 1966;22:79–105. [PubMed] [Google Scholar]
  10. Fogh J., Stuart D.C. Intracytoplasmic crystalline and noncrystalline patterns of Coxsackie virus in FL cells. Virology. 1959;9:705–708. doi: 10.1016/0042-6822(59)90161-8. [DOI] [PubMed] [Google Scholar]
  11. Hamre D., Kindig D.A., Mann J.L. Growth and intracellular development of a new respiratory virus. J. Virol. 1967;1:810–816. doi: 10.1128/jvi.1.4.810-816.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harter D.H., Choppin P.W. Cell-fusing activity of visna virus particles. Virology. 1967;31:379–388. doi: 10.1016/0042-6822(67)90172-9. [DOI] [PubMed] [Google Scholar]
  13. Harter D.H., Hsu K.C., Rose H.M. Immunofluorescence and cytochemical studies of visna virus in cell culture. J. Virol. 1967;1:1265–1270. doi: 10.1128/jvi.1.6.1265-1270.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harter D.H., Hsu K.C., Rose H.M. Vol. 129. 1968. Multiplication of visna virus in bovine and porcine cell lines; pp. 295–300. (Proc. Soc. Exptl. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  15. Harter D.H., Rosenkranz H.S., Rose H.M. Vol. 131. 1969. Nucleic acid content of visna virus; pp. 927–933. (Proc. Soc. Exptl. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  16. Lyons M.J., Moore D.H. Isolation of the mouse mammary tumor virus: Chemical and morphological studies. J. Natl. Cancer Inst. 1965;35:549–565. doi: 10.1093/jnci/35.3.549. [DOI] [PubMed] [Google Scholar]
  17. Morgan C., Howe C., Rose H.M. Intracellular crystals of Coxsackie virus viewed in the electron microscope. Virology. 1959;9:145–149. doi: 10.1016/0042-6822(59)90110-2. [DOI] [PubMed] [Google Scholar]
  18. Morgan C., Howe C., Rose H.M. Structure and development of viruses as observed in the electron microscope. V. Western equine encephalomyelitis virus. J. Exptl. Med. 1961;113:219–234. doi: 10.1084/jem.113.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morgan C., Rose H.M., Mednis B. Electron microscopy of herpes simplex virus. I. Entry. J. Virol. 1968;2:507–516. doi: 10.1128/jvi.2.5.507-516.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nii S., Morgan C., Rose H.M., Hsu K.C. Electron microscopy of herpes simplex virus. IV. Studies with ferritin-conjugated antibodies. J. Virol. 1968;2:1172–1184. doi: 10.1128/jvi.2.10.1172-1184.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sigurdsson B. Rida, a chronic encephalitis of sheep. Brit. Vet. J. 1954;110:341–354. [Google Scholar]
  22. Sigurdsson B., Pálsson P.A. Visna of sheep. A slow, demyelinating infection. Brit. J. Exptl. Pathol. 1958;39:519–528. [PMC free article] [PubMed] [Google Scholar]
  23. Sigurdsson B., Pálsson P.A., Grimsson H. Visna, a demyelinating transmissible disease of sheep. J. Neuropathol. Exptl. Neurol. 1957;16:389–403. doi: 10.1097/00005072-195707000-00010. [DOI] [PubMed] [Google Scholar]
  24. Sigurdsson B., Thormar H., Pálsson P.A. Cultivation of visna virus in tissue culture. Arch. Ges. Virusforsch. 1960;10:501–509. doi: 10.1007/BF01241886. [DOI] [PubMed] [Google Scholar]
  25. Stuart D.C., Fogh J. Electron microscope demonstration of intracellular poliovirus crystals. Exptl. Cell Res. 1959;18:378–381. doi: 10.1016/0014-4827(59)90019-9. [DOI] [PubMed] [Google Scholar]
  26. Thormar H. An electron microscope study of tissue cultures infected with visna virus. Virology. 1961;14:463–475. doi: 10.1016/0042-6822(61)90339-7. [DOI] [PubMed] [Google Scholar]
  27. Thormar H. The growth cycle of visna virus in monolayer cultures of sheep cells. Virology. 1963;19:273–278. doi: 10.1016/0042-6822(63)90064-3. [DOI] [PubMed] [Google Scholar]
  28. Thormar H. Observations on visna virus-infected cell cultures stained with acridine orange. Acta Pathol. Microbiol. Scand. 1966;68:54–58. doi: 10.1111/apm.1966.68.1.54. [DOI] [PubMed] [Google Scholar]
  29. Tournier P., Plisser M. Le développement intracellulaire du réovirus observé au microscope électronique. Presse Med. 1960;68:683–688. [Google Scholar]
  30. Zeigel R.F., Tyndall R.L., O'Conner T.E., Teeter E., Allen B.V. Observations on the morphology of a murine leukemia virus (Rauscher) propagated in tissue culture. Natl. Cancer Inst. Monograph. 1966;22:237–263. [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES