Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jun 9;165(2):367–376. doi: 10.1016/0042-6822(88)90581-8

The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation

Paul A Kapke , Frank YT Tung , Brenda G Hogue †,1, David A Brian †,2, Roger D Woods , Ronald Wesley
PMCID: PMC7130869  PMID: 2841792

Abstract

cDNA clones mapping within the first 2601 bases of the 3′ end of the porcine transmissible gastroenteritis coronavirus (TGEV) genome were sequenced by the method of Maxam and Gilbert and an open reading frame yielding a protein having properties of the matrix (M or E1) protein was identified. It is positioned at the 5′ side of the nucleocapsid (N) gene from which it is separated by an intergenic stretch of 12 bases. The deduced M protein comprises 262 amino acids, has a molecular weight of 29,544, is moderately hydrophobic, and has a net charge of +7 at neutral pH. Thirty-four percent of its amino acid sequence is homologous with the M protein of the bovine coronavirus (BCV), 32% with that of the mouse hepatitis coronavirus (MHV), and 19% with that of the avian infectious bronchitis coronavirus (IBV). Judging from alignment with the BCV, MHV, and IBV M proteins, the amino terminus of the TGEV M protein extends 54 amino acids from the virion envelope which compares with only 28 for BCV, 26 for MHV, and 21 for IBV. Eleven of the sixteen amino-terminal amino acids are hydrophobic and the positions of charged amino acids around this sequence suggest that the first 16 amino acids comprise a potentially cleavable signal peptide for membrane insertion. A similar sequence is not found in the M proteins of BCV, MHV, or IBV. When mRNA from infected cells, or RNA prepared by in vitro transcription of the reconstructed M gene, was translated in vitro in the presence of microsomes, the M protein became translocated and glycosylated. When a protein without the amino-terminal signal peptide was made by translating a truncated version of the M gene transcript, some translocation and glycosylation also occurred suggesting that the amino-terminal signal peptide on the TGEV M protein is not an absolute requirement for membrane translocation. Interestingly, the amino-terminal peptide did not appear to be cleaved during in vitro translation in the presence of microsomes suggesting that a step in virion assembly may be required for proper exposure of the cleavage site to the signal peptidase.

References

  1. Anderson D.J., Blobel G. Immunoprecipitation of proteins from cell-free translations. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; New York: 1983. pp. 111–120. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  2. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature (London) 1984;308:751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boursnell M.E.G., Brown T.D.K., Binns M.M. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1984;1:303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brian D.A., Hogue B.G., Lapps W., Potts B.J., Kapke P.A. Comparative structure of coronaviruses. In: Acres S.D., editor. Proceedings from the Fourth International Symposium of Neonatal Diarrhea. University of Saskatoon; Saskatoon, Saskatchewan, Canada: 1983. pp. 100–115. [Google Scholar]
  6. Brown T.D.K., Boursnell M.E.G. Avian infectious bronchitis virus genomic RNA contains sequence homologies at the intergenic boundaries. Virus Res. 1984;1:15–24. [Google Scholar]
  7. Budzilowicz C.J., Wilczynski S.P., Weiss S.R. Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the Tend of the viral mRNA leader sequence. J. Virol. 1985;53:834–840. doi: 10.1128/jvi.53.3.834-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujiki Y., Hubbard A.L., Fowler S., Lazarow P.B. Isolation of intracellular membranes by means of sodium carbonate treatment: Application to endoplasmic reticulum. J. Cell Biol. 1982;93:97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garwes D.J., Lucas M.H., Higgens D.A., Spike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978;3:179–190. [Google Scholar]
  10. Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
  11. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–264. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  12. Holmes K.V., Frana M.F., Robbins S.G., Sturman L.S. Coronavirus maturation. Adv. Exp. Biol. Med. 1984;173:37–52. doi: 10.1007/978-1-4615-9373-7_4. [DOI] [PubMed] [Google Scholar]
  13. Hopp T.P., Woods K.R. Vol. 78. 1981. Prediction of protein antigenic determinants from amino acid sequences; pp. 3824–3828. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hubbard S.C., Ivatt R.J. Synthesis and processing of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  15. Jacobs L., Van der Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kapke P.A., Tung F.Y.C., Brian D.A., Woods R.D., Wesley R. Nucleotide sequence of the porcine transmissible gastroenteritis matrix protein. Adv. Exp. Biol. Med. 1987;218:117–122. doi: 10.1007/978-1-4684-1280-2_13. [DOI] [PubMed] [Google Scholar]
  18. Kemeny L.J. Antibody responses in pigs inoculated with transmissible gastroenteritis virus and cross-reactions among ten isolates. Canad. J. Comp. Med. 1976;40:209–214. [PMC free article] [PubMed] [Google Scholar]
  19. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 1983;47:1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lapps W., Hogue B.G., Brian D.A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lau J.T.Y., Welply J.K., Shenbagamurthi P., Naider F., Lennarz W.J. Substrate recognition by oligosaccharyl transferase: Inhibition of cotranslational glycosylation by acceptor peptides. J. Biol. Chem. 1983;258:15255–15260. [PubMed] [Google Scholar]
  23. Laude H., Rasschaert D., Huet J.C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  24. Lipp J., Dobberstein B. The membrane-spanning segment of invariant chain (1γ) contains a potentially cleavable signal sequence. Cell. 1986;46:1103–1112. doi: 10.1016/0092-8674(86)90710-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987;105:1205–1214. doi: 10.1083/jcb.105.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Making S., Keck J.G., Stohlman S.A., Lai M.M.C. High frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Making S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus mRNAs can be freely reassorted: Evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maxam A.M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. In: Grossman L., Moldave K., editors. Vol. 65. Academic Press; Orlando, FL: 1980. pp. 499–560. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
  29. Queen C., Korn K.J. A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Res. 1984;12:581–599. doi: 10.1093/nar/12.1part2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rose J.K., Gallione C. Nucleotide sequences of the mRNAs encoding the VSV G and M proteins as determined from cDNA clones containing the complete coding regions. J. Virol. 1981;39:519–528. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rottier P., Armstrong J., Meyer D.I. Signal recognition particle-dependent insertion of coronavirus E1, and intracellular membrane glycoprotein. J. Biol. Chem. 1985;260:4648–4652. doi: 10.1016/S0021-9258(18)89119-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rottier P., Brandenburg D., Armstrong J., van der Zeijst B., Warren G. Vol. 81. 1984. Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: The E1 glycoprotein of coronavirus mouse hepatitis virus A59; pp. 1421–1425. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rottier J.M., Welling G.W., Welling-Webster S., Niesters H.G.M., Lenstra J.A., van der Zeijst B.A.M. Predicted membrane topology of the coronavirus protein E1. Biochemistry. 1986;25:1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
  34. Tooze J., Tooze S., Warren G. Replication of coronavirus MHV-A59 in sac− cells: Determination of the first site of budding of progeny virions. Eur. J. Cell. Biol. 1984;33:281–294. [PubMed] [Google Scholar]
  35. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986;14:4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wesley R.D., Woods R.D. Identification of a 17,000 molecular weight antigenic peptide in transmissible gastroenteritis virus. J. Gen. Virol. 1986;67:1419–1425. doi: 10.1099/0022-1317-67-7-1419. [DOI] [PubMed] [Google Scholar]
  37. Woods R.D., Wesley R.D., Kapke P.A. Neutralization of transmissible gastroenteritis virus by complement-dependent monoclonal antibodies. Amer. J. Vet. Res. 1987;49:300–304. [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES