Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 6;143(1):252–259. doi: 10.1016/0042-6822(85)90112-6

Processing of virus-specific glycoproteins of varicella zoster virus

Junko Namazue , Harvey Campo-Vera , Kenji Kitamura , Toshiomi Okuno , Koichi Yamanishi ∗,1
PMCID: PMC7130879  PMID: 2998004

Abstract

Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K–94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with [3H]glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-β-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing.

References

  1. Diggelmann H. Biosynthesis of an ugly-cosylated envelope glycoprotein of Rous sarcoma virus in the presence of tunicamycin. J. Virol. 1979;30:799–804. doi: 10.1128/jvi.30.3.799-804.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Garoff H., Schwarz R.T. Glycosylation is not necessary for membrane insertion and cleavage of Semliki Forest virus membrane proteins. Nature (London) 1978;274:487–489. doi: 10.1038/274487a0. [DOI] [PubMed] [Google Scholar]
  3. Grose C. The synthesis of glycoproteins in human melanoma cells infected with varicella-zoster virus. Virology. 1980;101:1–9. doi: 10.1016/0042-6822(80)90478-x. [DOI] [PubMed] [Google Scholar]
  4. Grose C., Edwards D.P., Friedrichs W.E., Weigle K.A. Monoclonal antibodies against three major glycoproteins of varicella-zoster virus. Infect. Immun. 1983;40:381–388. doi: 10.1128/iai.40.1.381-388.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grose C., Edwards D.P., Weigle K.A., Friedrichs W.E., McGuire W.L. Varicella-zoster virus-specific gp 140: A highly immunogenic and disulfide-linked structural glycoprotein. Virology. 1984;132:138–146. doi: 10.1016/0042-6822(84)90098-9. [DOI] [PubMed] [Google Scholar]
  6. Johnson D.C., Schlesinger M.J. Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores. Virology. 1980;103:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
  7. Johnson D.C., Spear P.G. Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J. Virol. 1982;43:1102–1112. doi: 10.1128/jvi.43.3.1102-1112.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson D.C., Spear P.G. O-Linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell. 1983;32:987–997. doi: 10.1016/0092-8674(83)90083-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koide N., Muramatsu T. Endoβ-N-acetylglucosaminidase acting on carbohydrate moieties of glycoproteins. J. Biol. Chem. 1974;249:4897–4904. [PubMed] [Google Scholar]
  10. Leavitt R., Schlessinger S., Kornfeld S. Tunicamycin inhihbits glycosylation and multiplication of Sindbis and besicular stomatitis viruses. J. Virol. 1977;21:375–385. doi: 10.1128/jvi.21.1.375-385.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakamura K., Compans R.W. Effects of glucosamine,2-deoxyglucose, and tunicamycin on glycosylation, sulfation, and assembly of influenza viral proteins. Virology. 1978;84:303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  12. Nakamura K., Homma M., Compans R. Effect of tunicamycin on the replication of Sendai virus. Virology. 1982;119:474–487. doi: 10.1016/0042-6822(82)90106-4. [DOI] [PubMed] [Google Scholar]
  13. Niemann H., Klenk H.D. Coronavirus glycoprotein El, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olofsson S., Blomberg J., Lycke E. O-Glycosidic carbohydrate-peptide linkages of herpes simplex virus glycoproteins. Arch. Virol. 1981;70:321–329. doi: 10.1007/BF01320247. [DOI] [PubMed] [Google Scholar]
  15. Olofsson S., Jeansson S., Lycke E. Unusual lectin-binding properties of a herpes simplex virus type-1-specific glycoprotein. J. Virol. 1981;38:564–570. doi: 10.1128/jvi.38.2.564-570.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olofsson S., Sjoblom I., Lundstron M., Jeansson S., Lycke E. Glycoprotein C of herpes simplex virus type 1: Characterization of 0-linked oligosaccharides. J. Gen. Virol. 1983;64:2735–2747. doi: 10.1099/0022-1317-64-12-2735. [DOI] [PubMed] [Google Scholar]
  17. Okuno T., Yamanishi K., Shiraki K., Takahashi M. Synthesis and processing of glycoproteins of varicella-zoster virus (VZV) as studied with monoclonal antibodies to VZV antigens. Virology. 1983;129:357–368. doi: 10.1016/0042-6822(83)90175-7. [DOI] [PubMed] [Google Scholar]
  18. Pizer L.I., Cohen G.H., Eisenberg R.J. Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. J. Virol. 1980;34:142–153. doi: 10.1128/jvi.34.1.142-153.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rothman J.E., Lodish H.F. Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 1977;269:775–780. doi: 10.1038/269775a0. [DOI] [PubMed] [Google Scholar]
  20. Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, influenza, and avian sarcoma virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shemer Y., Leventon-Kriss S., Sarov I. Isolation and polypeptide characterization of varicella-zoster virus. Virology. 1980;106:133–140. doi: 10.1016/0042-6822(80)90228-7. [DOI] [PubMed] [Google Scholar]
  22. Shida H., Dales S. Biogenesis of vaccinia: Carbohydrate of the hemagglutinin molecule. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  23. Shiraki K., Okuno T., Yamanishi K., Takahashi M. Polypeptides of varicella-zoster virus (VZV) and immunological relationship of VZV and herpes simplex virus (HSV) J. Gen. Virol. 1982;61:255–269. doi: 10.1099/0022-1317-61-2-255. [DOI] [PubMed] [Google Scholar]
  24. Stallcup K., Fields B.N. The replication of measles virus in the presence of tunicamycin. Virology. 1981;108:391–404. doi: 10.1016/0042-6822(81)90447-5. [DOI] [PubMed] [Google Scholar]
  25. Takatsuki A., Arima K., Tamura G. Tunicamycin, a new antibiotic. I. isolation and characterization of tunicamycin. J. Antibiotics. 1971;24:215–223. doi: 10.7164/antibiotics.24.215. [DOI] [PubMed] [Google Scholar]
  26. Takatsuki A., Kohno K., Tumura G. Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agr. Biol. Chem. 1975;39:2089–2091. [Google Scholar]
  27. Tartakoff A., Vassali P. Comparative studies of intracellular transport of secretory proteins. J. Cell Biol. 1978;79:694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Uchida N., Smilowitz H., Tanzer M.L. Vol. 76. 1979. Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts; pp. 1868–1872. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wenske E.A., Courtney R.J. Glycosylation of herpes simplex virus type 1 gC in the presence of tunicamycin. J. Virol. 1983;46:297–301. doi: 10.1128/jvi.46.1.297-301.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Witte 0.N., Wirth D. Structure of the murine leukemia virus envelope glycoprotein precursor. J. Virol. 1979;29:735–743. doi: 10.1128/jvi.29.2.735-743.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamanishi K., Matsunaga Y., Ogino T., Takahashi M., Takamizawa A. Virus replication and localization of varicella-zoster virus antigens in human embryonic fibroblast cells infected with cell-free virus. Infect Immun. 1980;28:536–541. doi: 10.1128/iai.28.2.536-541.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zweerink H.J., Neff B.J. Immune response after exposure to varicella zoster virus: Characterization of virus-specific antibodies and their corresponding antigens. Infect. Immun. 1981;31:436–444. doi: 10.1128/iai.31.1.436-444.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES