Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Oct 25;153(4):993–1010. doi: 10.1016/0022-2836(81)90463-0

Coronavirus glycoprotein E1, a new type of viral glycoprotein

H Niemann 1, H-D Klenk 1
PMCID: PMC7130891  PMID: 7343686

Abstract

The carbohydrate contents of coronavirus glycoproteins E1 and E2 have been analyzed. E2 has complex and mannose-rich-type oligosaccharide side-chains, which are attached by N-glycosidic linkages to the polypeptide. Glycosylation of E2 is initiated at the co-translational level, and it is inhibited by tunicamycin, 2-deoxy-glucose, and 2-deoxy-2-fluoro-glucose. Thus, E2 belongs to a glycoprotein type found in many other enveloped viruses. E1, in contrast, represents a different class of glycoprotein. The following observations indicate that its carbohydrate side-chains have 0-glycosidic linkage. (1) The constituent sugars of E1 are N-acetylglucosamine, N-acetylgalactosamine, galactose, and neuraminic acid; mannose and fucose are absent. (2) The side-chains can be removed by β-elimination. (3) Glycosylation of E1 is not sensitive to the compounds interfering with N-glycosylation. E1 is the first viral glycoprotein analyzed that contains only 0-glycosidic linkages. Coronaviruses are therefore a suitable model system to study biosynthesis and processing of this type of glycoprotein.

Footnotes

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 47, Virologia).

References

  1. Carlson D.M. Méthodologie de la structure et du métabolisme des Glycoconjugués. Editions du Centre National de la Recherche Scientifique; Paris: 1974. pp. 249–254. [Google Scholar]
  2. Datema R., Schwarz R.T., Winkler J. Eur. J. Biochem. 1980;110:355–361. doi: 10.1111/j.1432-1033.1980.tb04875.x. [DOI] [PubMed] [Google Scholar]
  3. Feizi T., Kabat E.A., Vicari G., Anderson B., Marsh W.L. J. Immunol. 1971;106:1578–1592. [PubMed] [Google Scholar]
  4. Fukuda M.N. J. Biol. Chem. 1981;256:3900–3905. [PubMed] [Google Scholar]
  5. Gahmberg G.C., Jokinen M., Karhi K.K., Anderson G.L. J. Biol. Chem. 1980;255:2169–2175. [PubMed] [Google Scholar]
  6. Gerdes J.C., Klein I., De Vald B., Burks J.S. J. Virol. 1981;38:231–238. doi: 10.1128/jvi.38.1.231-238.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holmes K.V., Doller E.W., Behnke J.N. In: The Biochemistry and Biology of Coronaviruses. ter Meulen V., Siddell S., Wege H., editors. Plenum Press; New York: 1981. in the press. [Google Scholar]
  8. Kessler S.W. J. Immunol. 1975;115:1617–1624. [PubMed] [Google Scholar]
  9. Klenk H.-D., Rott R. Curr. Top. Mcrobiol. Immunol. 1980;90:19–48. doi: 10.1007/978-3-642-67717-5_2. [DOI] [PubMed] [Google Scholar]
  10. Krusius T., Finne J. Eur. J. Biochem. 1977;78:369–379. doi: 10.1111/j.1432-1033.1977.tb11749.x. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U.K. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Laskey R.A., Mills A.D. Eur. J. Biochem. 1975;56:335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  13. McIntosh K. Curr. Top. Microbiol. Immunol. 1974;63:85–129. [Google Scholar]
  14. Montreuil J. Advan. Carbohydr. Chem. Biochem. 1980;37:157–223. doi: 10.1016/s0065-2318(08)60021-9. [DOI] [PubMed] [Google Scholar]
  15. Nagashima K., Wege H., Meyermann R., ter Meulen V. Acta Neuropathol. 1978;44:63–70. doi: 10.1007/BF00691641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagashima K., Wege H., Meyermann R., ter Meulen V. Acta Neuropathol. 1979;45:205–213. doi: 10.1007/BF00702672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olofsson S., Jeansson S., Lycke E. J. Virol. 1981;38:564–570. doi: 10.1128/jvi.38.2.564-570.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pigman W., Downs F. In: Horowitz M.I., Pigman W., editors. vol. 1. Academic Press; New York: 1977. pp. 80–83. (The Glycoconjugates). [Google Scholar]
  19. Robb J.A., Bond C.W. In: Fraenkel-Conrat H., Wagner R.R., editors. vol. 14. Plenum Press; New York: 1979. pp. 193–247. (Comprehensive Virology). [Google Scholar]
  20. Schmidt M.F.G. Virology. 1982 doi: 10.1016/0042-6822(82)90424-X. in the press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schmidt M.F.G, Schlesinger M.J. Cell. 1980;17:813–819. doi: 10.1016/0092-8674(79)90321-0. [DOI] [PubMed] [Google Scholar]
  22. Schwarz R.T., Datema R. Trends Biochem. Sci. 1980;5:65–67. [Google Scholar]
  23. Schwarz R.T., Klenk H.-D. J. Virol. 1974;14:1023–1034. doi: 10.1128/jvi.14.5.1023-1034.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shida H., Dales S. Virology. 1981;111:56–72. doi: 10.1016/0042-6822(81)90653-x. [DOI] [PubMed] [Google Scholar]
  25. Siddell S.G., Wege H., Barthel A., ter Meulen V. J. Gen. Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
  26. Slomiany A., Slomiany B.L. J. Biol. Chem. 1978;253:7301–7306. [PubMed] [Google Scholar]
  27. Spackman D.H., Stein W.H., Moore S. Anal. Chem. 1958;30:1190–1206. [Google Scholar]
  28. Stellner K., Hakomori S.I. Méthodologie de la structure et du métabolisme des Glycoconjugués (glycoprotéines et glycolipides. Editions du Centre National de la Recherche Scientifique; Paris: 1974. pp. 95–109. [Google Scholar]
  29. Stohlman S.A., Lai M.M.C. J. Virol. 1979;32:672–675. doi: 10.1128/jvi.32.2.672-675.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Storz J., Rott R., Kaluza G. Infect. Immun. 1981;31:1214–1222. doi: 10.1128/iai.31.3.1214-1222.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Storz J., Kaluza G., Niemann H., Rott R. In: The Biochemistry and Biology of Coronaviruses. ter Meulen V., Siddell S., Wedge H., editors. Plenum Press; New York: 1981. in the press. [Google Scholar]
  32. Struck D.K., Lennarz W.J. In: The Biochemistry of Glycoproteins and Proteoglycans. Lennarz W.J., editor. Plenum Press; New York: 1980. pp. 35–83. [Google Scholar]
  33. Sturman L.S. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sturman L.S. In: The Biochemistry and Biology of Coronaviruses. ter Meulen V., Siddell S., Wege H., editors. Plenum Press; New York: 1981. in the press. [Google Scholar]
  35. Sturman L.S., Holmes K.V. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sturman L.S., Holmes K.V., Behnke J. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tyrrell D.A.J., Alexander D.J., Almeida J.D., Cunningham C.H., Easterday B.C., Garwes D.J., Hierholzer J.C., Kapikian A., Macnaughton M.R., McIntosh K. Intervirology. 1978;10:321–328. doi: 10.1159/000148996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zinn A.B., Planter J.J., Carlson D.M. In: Horowitz M.I., Pigman W., editors. vol. 1. Academic Press; New York: 1977. pp. 69–85. (The Glycoconjugates). [Google Scholar]

Articles from Journal of Molecular Biology are provided here courtesy of Elsevier

RESOURCES