Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;56:175–197. doi: 10.1016/S0065-3527(01)56007-8

Regulation of t cell responses during central nervous system viral infection

David N Irani ∗,, Diane E Griffin
PMCID: PMC7130905  PMID: 11450299

Publisher Summary

This chapter focuses on the contribution of T cells to the pathogenesis of neurologic disease and discusses specific examples of how individual T cell effector functions can be regulated during central nervous system's (CNS) viral infections. T cells can serve a variety of functions as part of the host immune response during CNS viral infection. They can participate directly in viral clearance from the brain, or they can promote the survival of the host without exerting any direct effect on virus replication. Only a small number of T cells infiltrate the brain under normal circumstances. This paucity of immune surveillance of baseline is one of several reasons why the CNS has often been characterized as an “immunologically privileged” site. T cell-mediated lysis of infected cells has been demonstrated to be an important mechanism of viral clearance from tissues other than the CNS. In several well-characterized animal models of CNS viral infection, part of the elicited T cell response actually contributes to the pathology and adverse outcome of disease. Neurotropic lymphocytic choriomeningitis virus infection of adult mice is the premier example of this phenomenon.

References

  1. Ando K., Guidotti L.G., Wirth S., Ishikawa T., Missale G., Moriyama T., Schreiber R.D., Schlicht H.-J., Huang S., Chisari F.V. Class I-restricted cytotoxic T lymphocytes are directly cytopathic for their targets in vivo. J. Immunol. 1994;152:3245–3252. [PubMed] [Google Scholar]
  2. Barac-Latas V., Wege H., Lassmann H. Apoptosis of T lymphocytes in coronavirus-induced encephalomyelitis. Reg. Immunol. 1995;6:355–357. [Google Scholar]
  3. Bauer J., Wekerle H., Lassmann H. Apoptosis in brain-specific autoimmune disease. Curr. Opinion Immunol. 1995;7:839–843. doi: 10.1016/0952-7915(95)80057-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonetti B., Pohl J., Gao Y.-L., Raine C.S. Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J. Immunol. 1997;159:5733–5741. [PubMed] [Google Scholar]
  5. Buchmeier M.J., Welsh R.M., Dutko F.J., Oldstone M.B.A. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv. Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  6. Castro R.F., Evans G.D., Jaszewski A., Perlman S. Coronavirus-induced demyelination occurs in the presence of virus-specific cytotoxic T cells. Virology. 1994;200:733–743. doi: 10.1006/viro.1994.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole G.A., Nathanson N., Prendergast R.A. Requirements for θ-bearing cells: lymphocytic choriomeningitis virus induced central nervous system disease. Nature (London) 1972;238:335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  8. Cserr H.F., Knopf P.M. Cervical lymphatics, the blood-brain harrier, and the immunoreactivity of the brain: a new view. Immunol. Today. 1992;13:507–512. doi: 10.1016/0167-5699(92)90027-5. [DOI] [PubMed] [Google Scholar]
  9. Dharakul T., Rott L., Greenberg H.B. Recovery from chronic rotavirus infection in mice with severe combined immunodeficiency: virus clearance mediated by adoptive transfer of immune CD8+ T. J. Virol. 1990;64:4375–4382. doi: 10.1128/jvi.64.9.4375-4382.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doherty P.C., Allan J.E., Ceredig R. Contributions of host and donor T cells to the inflammatory process in murine lymphocytic choriomeningitis. Cell. Immunol. 1988;116:475–481. doi: 10.1016/0008-8749(88)90246-8. [DOI] [PubMed] [Google Scholar]
  11. Doherty P.C., Allan J.E., Clark I.A. Tumor necrosis factor inhibits the development of viral meningitis or induces rapid death depending on the severity of inflammation at the time of administration. J. Immunol. 1989;142:3576–3582. [PubMed] [Google Scholar]
  12. Gorrell M.D., Lemm J.A., Rice C.M., Griffin D.E. Immunization with nonstructural proteins promotes functional recovery of alphavirus-infected neurons. J. Virol. 1997;71:3415–3419. doi: 10.1128/jvi.71.5.3415-3419.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffin D.E., Levine B., Tyor W.R., Irani D.N. The immune response in viral encephalitis. Sem. Immunol. 1992;4:111–119. [PubMed] [Google Scholar]
  14. Harling-Berg C., Knopf P.M., Merriam J., Cserr H.F. Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J. Neuroimmunol. 1989;25:185–193. doi: 10.1016/0165-5728(89)90136-7. [DOI] [PubMed] [Google Scholar]
  15. Hawke S., Stevenson P.G., Freeman S., Bangham C.R.M. Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. J. Exp. Med. 1998;187:1575–1582. doi: 10.1084/jem.187.10.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirsch R.L., Griffin D.E. The pathogenesis of Sindbis virus infection in athymic nude mice. J. Immunol. 1979;123:1215–1219. [PubMed] [Google Scholar]
  17. Irani D.N, Griffin D.E. Isolation of brain parenchymal lymphocytes for flow cytometric analysis: application to acute viral encephalitis. J. Immunol. Meth. 1991;39:223–232. doi: 10.1016/0022-1759(91)90192-i. [DOI] [PubMed] [Google Scholar]
  18. Irani D.N., Griffin D.E. Regulation of lymphocyte homing into the brain during viral encephalitis at various stages of infection. J. Immunol. 1996;156:3850–3857. [PubMed] [Google Scholar]
  19. Irani D.N, Lin K.-I., Griffin D.E. Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells. J. Immunol. 1996;157:4333–4340. [PubMed] [Google Scholar]
  20. Irani D.N., Lin K.-I., Griffin D.E. Regulation of brain-derived T cells during acute central nervous system inflammation. J. Immunol. 1997;158:2318–2326. [PubMed] [Google Scholar]
  21. Irani D.N. The susceptibility of mice to immune-mediated neurologic disease correlates with the degree to which their lymphocytes resist the effects of brainderived gangliosides. J. Immunol. 1998;161:2746–2752. [PubMed] [Google Scholar]
  22. Jacoby R.O., Bhatt P.N., Schwartz A. Protection of mice from lethal flavivirus encephalitis by adoptive transfer of splenic cells from donors infected with live virus. J. Infect. Dis. 1980;141:617–627. doi: 10.1093/infdis/141.5.617. [DOI] [PubMed] [Google Scholar]
  23. Joly E., Mucke L., Oldstone M.B.A. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991;253:1283–1285. doi: 10.1126/science.1891717. [DOI] [PubMed] [Google Scholar]
  24. Kündig T.M., Hengartner H., Zinkernagel R.M. T cell-dependent IFN-γ exerts an antiviral effect in the central nervous system but not in peripheral solid organs. J. Immunol. 1993;150:2316–2321. [PubMed] [Google Scholar]
  25. Levine B., Hardwick J.M., Trapp B.D., Crawford T.O., Bollinger R.C., Griffin D.E. Antibody-clearance of alphavirus infection from neurons. Science. 1991;254:856–860. doi: 10.1126/science.1658936. [DOI] [PubMed] [Google Scholar]
  26. Lewis J., Wesselingh S.L., Griffin D.E., Hardwick J.M. Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J. Virol. 1996;70:1828–1835. doi: 10.1128/jvi.70.3.1828-1835.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lin M.T., Stohlman S.A., Hinton D.R. Mouse hepatitis virus is cleared from the central nervous system of mice lacking perforin-mediated cytolysis. J. Virol. 1997;71:383–389. doi: 10.1128/jvi.71.1.383-391.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lipton H.L., Dal Canto M.C. Theiler's virus-induced demyelination: prevention by immunosuppression. Science. 1976;192:62–64. doi: 10.1126/science.176726. [DOI] [PubMed] [Google Scholar]
  29. Lynch E., Doherty P.C., Ceredig R. Phenotypic and functional analysis of the cellular response in regional lymphoid tissue during an acute virus infection. J. Immunol. 1989;142:3592–3598. [PubMed] [Google Scholar]
  30. Marten N.W., Stohlman S.A., Smith-Begolka W., Miller S.D., Dimacali E., Yao Q., Stohl S., Goverman J., Bergmann C.C. Selection of CD8+ T cells with highly focused specificity during viral persistence in the central nervous system. J. Immunol. 1999;162:3905–3914. [PubMed] [Google Scholar]
  31. Mauerhoff R., Pujol-Bonell R., Mirakian R., Bottazzo G.F. Differential expression and regulation of major histocompatibility complex (MHC) products in neural and glial cells of human fetal brain. J. Neuroimmunol. 1980;18:271–289. doi: 10.1016/0165-5728(88)90049-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller S.D., VanderLugt C.L., Begolka W.S., Pao W., Yauch R.L., Neville K.L., Katz-Levy Y., Carrizosa A., Kim B.S. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nature Med. 1997;3:113–1136. doi: 10.1038/nm1097-1133. [DOI] [PubMed] [Google Scholar]
  33. Mims C.A., Blanden R.V. Antiviral action of immune lymphocytes in mice infected with lymphocytic choriomeningitis virus. Infect. Immunity. 1972;6:695–698. doi: 10.1128/iai.6.5.695-698.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moench T.R., Griffin D.E. Immunocytochemical identification and quantitation of mononuclear cells in cerebrospinal fluid, meninges and brain during acute viral encephalitis. J. Exp. Med. 1984;159:77–88. doi: 10.1084/jem.159.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mokhtarian F., Grob D., Griffin D.E. Role of the immune response in Sindhis virus-induced paralysis of SJL/J mice. J. Immunol. 1989;143:633–637. [PubMed] [Google Scholar]
  36. Munoy J.L., McCarthy C.A., Clark M.E., Hall C.B. Respiratory syncytial virus infection in C57B1.6 mice:clearance of virus from the lungs with virus-specific cytotoxic cells. J. Virol. 1991;65:4494–4497. doi: 10.1128/jvi.65.8.4494-4497.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Musette P., Bureau J.-F., Gachelin G., Kourilsky P., Brahic M. T lymphocyte repertoire in Theiler's virus encephalomyelitis: the nonspecific infiltration of the central nervous system of infected SJL/J mice is associated with a selective local T cell expansion. Eur. J. Immunol. 1995;25:1589–1593. doi: 10.1002/eji.1830250618. [DOI] [PubMed] [Google Scholar]
  38. Oldstone M.B.A, Blount P., Southern P.J., Lampert P.W. Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature (London) 1986;321:239–243. doi: 10.1038/321239a0. [DOI] [PubMed] [Google Scholar]
  39. Pope J.G., Karpus W.J., VanderLugt C., Miller S.D. Flow cytometric and functional analysis of central nervous system-infiltrating cells in SJL/J mice with Theiler's virus-induced demyelinating disease. Evidence for a CD4+ T cell-mediated pathology. J. Immunol. 1996;156:4050–4058. [PubMed] [Google Scholar]
  40. Richt J.A, Stitz L., Wekerle H., Rott R. Borna disease, a progressive meningoencephalomyelitis as a model for CD4+ T cell-mediated immunopathology in the brain. J. Exp. Med. 1989;170:1045–1050. doi: 10.1084/jem.170.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rowell J.F., Griffin D.E. The inflammatory response to nonfatal Sindbis virus infection of the nervous system is more severe in SJL than in BALB/c mice and is associated with low levels of IL-4 mRNA and high levels of IL-10-producing CD4+ T cells. J. Immunol. 1999;162:162–1632. [PubMed] [Google Scholar]
  42. Schmeid M., Breitschopf H., Gold R., Zischler H., Rothe G., Wekerle H., Lassmann H. Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis: evidence for programmed cell death as a mechanism to control inflammation in the brain. Am. J. Path. 1993;143:446–452. [PMC free article] [PubMed] [Google Scholar]
  43. Sethi K.K., Omata Y., Schneweiss K.E. Protection of mice from fatal herpes simplex virus type I infection by adoptive transfer of cloned virus-specific and H2-restricted cytotoxic T lymphocytes. J. Gen. Virol. 1983;64:443–452. doi: 10.1099/0022-1317-64-2-443. [DOI] [PubMed] [Google Scholar]
  44. Stanley J., Cooper S.J., Griffin D.E. Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice. J. Virol. 1986;58:107–115. doi: 10.1128/jvi.58.1.107-115.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stohlman S.A., Matsushima G.K., Casteel N., Weiner L.P. In vivo effects of coronavirus-specific T cell clones: DTH induced cells prevent a lethal infection but do not inhibit virus replication. J. Immunol. 1986;136:3052–3056. [PubMed] [Google Scholar]
  46. Stohlman S.A., Kyuwa S., Polo J.M., Brady D., Lai M.M., Bergmann C.C. Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J. Virol. 1993;67:7050–7059. doi: 10.1128/jvi.67.12.7050-7059.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stohlman S.A., Bergmann C.C., van der Veen R.C., Hinton D.R. Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J. Virol. 1995;69:684–694. doi: 10.1128/jvi.69.2.684-694.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stohlman S.A., Bergmann C.C., Lin M.T., Cua D.J., Hinton D.R. CTL effector function within the central nervous system requires CD4+ T cells. J. Immunol. 1998;160:2896–2904. [PubMed] [Google Scholar]
  49. Sussman M.A., Shubin R.A., Kyuwa S., Stohlman S.A. T cell-mediated clearance of mouse hepatitis virus strain JHM from the central nervous system. J. Viral. 1989;63:3051–3056. doi: 10.1128/jvi.63.7.3051-3056.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tishon A., Eddleston J., de la Torre J.C., Oldstone M.B.A. Cytotoxic T lymphocytes cleanse viral gene products from individually infected neurons and lymphocytes in mice persistently infected with lymphocytic choriomeningitis virus. Virology. 1993;197:463–467. doi: 10.1006/viro.1993.1613. [DOI] [PubMed] [Google Scholar]
  51. Tyor W.R., Moench T.R., Griffin D.E. Characterization of the local and systemic B cell response of normal and athymic nude mice with Sindbis virus encephalitis. J. Neuroimmunol. 1989;24:207–215. doi: 10.1016/0165-5728(89)90118-5. [DOI] [PubMed] [Google Scholar]
  52. Tyor W.R., Wesselingh S.L., Levine B., Griffin D.E. Long-term intraparenchymal Ig secretion after acute viral encephalitis in mice. J. Immunol. 1992;149:4016–4023. [PubMed] [Google Scholar]
  53. Tyor W.R., Griffin D.E. Virus specificity and isotype expression of intraparenchymal antibody-secreting cells during Sindbis virus encephalitis in mice. J. Neuroimmunol. 1993;177:475–484. doi: 10.1016/0165-5728(93)90056-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wesselingh S.L., Levine B., Fox R.J., Choi S., Griffin D.E. Intracerebral cytokine mRNA expression during fatal and nonfatal alphavirus encephalitis suggests a predominant type 2 T cell response. J. Immunol. 1994;152:1289–1297. [PubMed] [Google Scholar]
  55. Williamson J.S.P., Stohlman S.A. Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J. Virol. 1990;64:4589–4592. doi: 10.1128/jvi.64.9.4589-4592.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Williamson J.S.E., Sykes K.C., Stohlman S.A. Characterization of braininfiltrating mononuclear cells during infection with mouse hepatitis virus strain, JHM. J. Neuroimmunol. 1991;32:199–207. doi: 10.1016/0165-5728(91)90189-E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wong G.H.W., Bartlett P.F., Clark-Lewis I., Battye F., Schrader J.W. Inducible expression of H-2 and la antigens on brain cells. Nature (London) 1984;310:688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  58. Yap K.L., Ada G.L., McKenzie I.F.C. Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature (London) 1978;273:238–242. doi: 10.1038/273238a0. [DOI] [PubMed] [Google Scholar]
  59. Young D.F., Randall R.E., Hoyle J.A., Souberbielle B.E. Clearance of persistent paramyxovirus infection is mediated by cellular immune responses but not by serum neutralizing antibody. J. Virol. 1990;64:5403–5411. doi: 10.1128/jvi.64.11.5403-5411.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zinkernagel R.M., Welsh R.M. H-2 compatibility requirement for virusspecific T cell-mediated effector functions in vivo. I. Specificity of T cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H2K and H-2D. J. Immunol. 1976;117:1495–1502. [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES