Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;80:71–114. doi: 10.1016/S0065-2776(02)80013-X

Proteolysis and antigen presentation by MHC class II molecules

Paula Wolf Bryant , Ana-Maria Lennon-Duménil , Edda Fiebiger , Cécile Lagaudriére-Gesbert , Hidde L Ploegh
PMCID: PMC7130937  PMID: 12078484

Abstract

Proteolysis is the primary mechanism used by all cells not only to dispose of unwanted proteins but also to regulate protein function and maintain cellular homeostasis. Proteases that reside in the endocytic pathway are the principal actors of terminal protein degradation. The proteases contained in the endocytic pathway are classified into four major groups based on the active-site amino acid used by the enzyme to hydrolyze amide bonds of proteins: cysteine, aspartyl, serine, and metalloproteases. The presentation of peptide antigens by major histocompatibility complex (MHC) class II molecules is strictly dependent on the action of proteases. Class II molecules scour the endocytic pathway for antigenic peptides to bind and present at the cell surface for recognition by CD4+ T cells. The specialized cell types that support antigen presentation by class II molecules are commonly referred to as professional antigen presenting cells (APCs), which include bone marrow-derived B lymphocytes, dendritic cells (DCs), and macrophages. In addition, the expression of certain endocytic proteases is regulated either at the level of gene transcription or enzyme maturation and their activity is controlled by the presence of endogenous protease inhibitors.

References

  1. Alfonso C, Karlsson L. Nonclassical MHC class II molecules. Annu. Rev. Immunol. 2000;18:113–142. doi: 10.1146/annurev.immunol.18.1.113. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Fernandez M, Barrett A.J, Gerhartz B, Dando P.M, Ni J, Abrahamson M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999;274:19195–19203. doi: 10.1074/jbc.274.27.19195. [DOI] [PubMed] [Google Scholar]
  3. Amigorena S, Bonnerot C. Fc receptor signaling and trafficking: A connection for antigen processing. Immunol. Rev. 1999;172:279–284. doi: 10.1111/j.1600-065x.1999.tb01372.x. [DOI] [PubMed] [Google Scholar]
  4. Amigorena S, Bonnerot C. Fc receptors for IgG and antigen presentation on MHC class I and class II molecules.Semin. Semin. Immunol. 1999;11:385–390. doi: 10.1006/smim.1999.0196. [DOI] [PubMed] [Google Scholar]
  5. Amigorena S, Webster P, Drake J, Newcomb J, Cresswell P, Mellman I. Invariant chain cleavage and peptide loading in major histocompatibility complex class II vesicles. J. Exp. Med. 1995;181:1729–1741. doi: 10.1084/jem.181.5.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Antoniou A.N, Blackwood S.L, Mazzeo D, Watts C. Control of antigen presentation by a single protease cleavage site. Immunity. 2000;12:391–398. doi: 10.1016/s1074-7613(00)80191-0. [DOI] [PubMed] [Google Scholar]
  7. Arneson L.S, Miller J. Efficient endosomal localization of major histocompatibility complex class II-invariant chain complexes requires multimerization of the invariant chain targeting sequence. J. Cell. Biol. 1995;129:1217–1228. doi: 10.1083/jcb.129.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Arunachalam B, Phan U.T, Geuze H.J, Cresswell P. Vol. 97. 2000. Enzymatic reduction of disulfide bonds in lysosomes: Characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT) pp. 745–750. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Authier F, Metioui M, Bell A.W, Mort J.S. Negative regulation of epidermal growth factor signaling by selective proteolytic mechanisms in the endosome mediated by cathepsin B. J. Biol. Chem. 1999;274:33723–33731. doi: 10.1074/jbc.274.47.33723. [DOI] [PubMed] [Google Scholar]
  10. Avva R.R, Cresswell P. In vivo and in vitro formation and dissociation of HLA-DR complexes with invariant chain-derived peptides. Immunity. 1994;1:763–774. doi: 10.1016/s1074-7613(94)80018-9. [DOI] [PubMed] [Google Scholar]
  11. Bakke O, Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell. 1990;63:707–716. doi: 10.1016/0092-8674(90)90137-4. [DOI] [PubMed] [Google Scholar]
  12. Bakke O, Nordeng T.W. Intracellular traffic to compartments for MHC class II peptide loading: Signals for endosomal and polarized sorting. Immunol. Rev. 1999;172:171–187. doi: 10.1111/j.1600-065x.1999.tb01365.x. [DOI] [PubMed] [Google Scholar]
  13. Barrett A.J, Kembhavi A.A, Brown M.A, Kirschke H, Knight C.G, Tamai M. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 1982;201:189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Benaroch P, Yilla M, Raposo G, Ito K, Miwa K, Geuze H.J. How MHC class II molecules reach the endocytic pathway. EMBO J. 1995;14:37119. doi: 10.1002/j.1460-2075.1995.tb06973.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bennett K, Levine T, Ellis J.S, Peanasky R.J, Samloff I.M, Kay J. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur. J. Immunol. 1992;22:1519–1524. doi: 10.1002/eji.1830220626. [DOI] [PubMed] [Google Scholar]
  16. Bevec T, Stoka V, Pungercic G, Dolenc I, Turk V. Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J. Exp. Med. 1996;183:1331–1338. doi: 10.1084/jem.183.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bjork I, Ylinenjarvi K. Interaction between chicken cystatin and the cysteine proteinases actinidin, chymopapain A, and ficin. Biochemistry. 1990;29:1770–1776. doi: 10.1021/bi00459a016. [DOI] [PubMed] [Google Scholar]
  18. Blum J.S, Cresswell P. Vol. 85. 1988. Role for intracellular proteases in the processing and transport of class II HLA antigens; pp. 3975–3979. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bogyo M, Verhelst S, Bellingard-Dubouchaud V, Toba S, Greenbaum D. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol. 2000;7:27–38. doi: 10.1016/s1074-5521(00)00061-2. [DOI] [PubMed] [Google Scholar]
  20. Bowman E.J, Siebers A, Altendorf K. Vol. 85. 1988. Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells; pp. 7972–7976. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brachet V, Pehau-Arnaudet G, Desaymard C, Raposo G, Amigorena S. Early endosomes are required for major histocompatibility complex class II transport to peptide-loading compartments. Mol. Biol. Cell. 1999;10:2891–2904. doi: 10.1091/mbc.10.9.2891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Brachet V, Raposo G, Amigorena S, Mellman I. Ii chain controls the transport of major histocompatibility complex class II molecules to and from lysosomes. J. Cell Biol. 1997;137:51–65. doi: 10.1083/jcb.137.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bremnes B, Madsen T, Gedde-Dahl M, Bakke O. An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization. J. Cell Sci. 1994;107:2021–2032. doi: 10.1242/jcs.107.7.2021. [DOI] [PubMed] [Google Scholar]
  24. Bromme D, McGrath M.E. High level expression and crystallization of recombinant human cathepsin S. Protein Sci. 1996;5:789–791. doi: 10.1002/pro.5560050426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bromme D, Steinert A, Friebe S, Fittkau S, Wiederanders B, Kirschke H. The specificity of bovine spleen cathepsin S: A comparison with rat liver cathepsins L and B. Biochem. J. 1989;264:475–481. doi: 10.1042/bj2640475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Brown W.M, Dziegielewska K.M. Friends and relations of the cystatin super family New members and their evolution. Protein Sci. 1997;6:5–12. doi: 10.1002/pro.5560060102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bryant E.W, Roos P, Ploegh H.L, Sant A.J. Deviant trafficking of I-Ad mutant molecules is reflected in their peptide binding properties. Eur. J. Immunol. 1999;29:2729–2739. doi: 10.1002/(SICI)1521-4141(199909)29:09<2729::AID-IMMU2729>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  28. Busch R, Doebele R.C, Patil N.S, Pashine A, Mellins E.D. Accessory molecules for MHC class II peptide loading. Curr. Opin. Immunol. 2000;12:99–106. doi: 10.1016/s0952-7915(99)00057-6. [see Comments] [DOI] [PubMed] [Google Scholar]
  29. Buttle D.J, Murata M, Knight C.G, Barrett A.J. CA074 methyl ester: A proinhibitor for intracellular cathepsin B. Arch. Biochem. Biophys. 1992;299:377–380. doi: 10.1016/0003-9861(92)90290-d. [DOI] [PubMed] [Google Scholar]
  30. Castellino F, Germain R.N. Extensive trafficking of MHC class II-invariant chain complexes in the endocytic pathway and appearance of peptide-loaded class II in multiple compartments. Immunity. 1995;2:73–88. doi: 10.1016/1074-7613(95)90080-2. [DOI] [PubMed] [Google Scholar]
  31. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 1997;9:10–16. doi: 10.1016/s0952-7915(97)80153-7. [DOI] [PubMed] [Google Scholar]
  32. Chapman H.A. Endosomal proteolysis and MHC class II function. Curr. Opin. Immunol. 1998;10:93–102. doi: 10.1016/s0952-7915(98)80038-1. [DOI] [PubMed] [Google Scholar]
  33. Chapman H.A, Riese R.J, Shi G.-P. Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 1997;59:63–88. doi: 10.1146/annurev.physiol.59.1.63. [DOI] [PubMed] [Google Scholar]
  34. Collins A.R, Grubb A. Cystatin D, a natural salivary cysteine protease inhibitor, inhibits coronavirus replication at its physiologic concentration. Oral Microbiol. Immunol. 1998;13:59–61. doi: 10.1111/j.1399-302X.1998.tb00753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Collins D.S, Unanue E.R, Harding C.V. Reduction of disulfide bonds within lysosomes is a key step in antigen processing. J. Immunol. 1991;147:4054–4059. [PubMed] [Google Scholar]
  36. Coulombe R, Grochulski P, Sivaraman J, Menard R, Mort J.S, Cygler M. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 1996;15:5492–5503. [PMC free article] [PubMed] [Google Scholar]
  37. Crawford C, Mason R.W, Wikstrom P, Shaw E. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine protemases calpain II, cathepsin L and cathepsin B. Biochem. J. 1988;253:751–758. doi: 10.1042/bj2530751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Cresswell P. Invariant chain structure and MHC class II function. Cell. 1996;84:505–507. doi: 10.1016/s0092-8674(00)81025-9. [DOI] [PubMed] [Google Scholar]
  39. Cygler M, Mort J.S. Proregion structure of members of the papain superfamily: Mode of inhibition of enzymatic activity. Biochimie. 1997;79:645–652. doi: 10.1016/s0300-9084(97)83497-9. [DOI] [PubMed] [Google Scholar]
  40. de Baey A, Lanzavecchia A. The role of aquaporins in dendritic cell macropinocytosis. J. Exp. Med. 2000;191:743–748. doi: 10.1084/jem.191.4.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Denzin L.K, Cresswell P. HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell. 1995;82:155–165. doi: 10.1016/0092-8674(95)90061-6. [DOI] [PubMed] [Google Scholar]
  42. Denzin L.K, Hammond C, Cresswell P. HLA-DM interactions with intermediates in HLA-DR maturation and a role for HLA-DM in stabilizing empty HLA-DR molecules. J. Exp. Med. 1996;184:2153–2165. doi: 10.1084/jem.184.6.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Deussing J, Roth W, Saftig P, Peters C, Ploegh H.L, Villadangos J.A. Vol. 95. 1998. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation; pp. 4516–4521. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Doebele R.C, Busch R, Scott H.M, Pashine A, Mellins E.D. Determination of the HLA-DM interaction site on HLA-DR molecules. Immunity. 2000;13:517–527. doi: 10.1016/s1074-7613(00)00051-0. [DOI] [PubMed] [Google Scholar]
  45. Drakesmith H, O'Neil D, Schneider S.C, Binks M, Medd P, Sercarz E. Vol. 95. 1998. In vivo priming of T cells against cryptic determinants by dendritic cells exposed to interleukin 6 and native antigen; pp. 14903–14908. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Driessen C, Bryant R.A, Lennon-Dumenil A.M, Villadangos J.A, Bryant P.W, Shi G.P. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J. Cell Biol. 1999;147:775–790. doi: 10.1083/jcb.147.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Driessen C, Lennon-Dumenil A.M, Ploegh H.L. Individual cathepsins degrade immune complexes internalized by antigen-presenting cells via Fcgamma receptors. Eur. J. Immunol. 2001;31:1592–1601. doi: 10.1002/1521-4141(200105)31:5<1592::AID-IMMU1592>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  48. Engering A.J, Cella M, Fluitsma D, Brockhaus M, Hoefsmit E.C, Lanzavecchia A. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur J. Immunol. 1997;27:2417–2425. doi: 10.1002/eji.1830270941. [DOI] [PubMed] [Google Scholar]
  49. Erickson A.H. Biosynthesis of lysosomal endopeptidases. J. Cell. Biochem. 1989;40:31–41. doi: 10.1002/jcb.240400104. [DOI] [PubMed] [Google Scholar]
  50. Felbor U, Dreier L, Bryant R.A, Ploegh H.L, Olsen B.R, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000;19:1187–1194. doi: 10.1093/emboj/19.6.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Fiebiger E, Meraner P, Weber E, Fang I.-F, Stingl G, Ploegh H. Cytokines regulate proteolysis in major histocompatibility complex class II-dependent antigen presentation by dendritic cells. J. Exp. Med. 2001;193:881–892. doi: 10.1084/jem.193.8.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Fineschi B, Arneson L.S, Naujokas M.F, Miller J. Vol. 92. 1995. Proteolysis of major histocompatibility complex class II-associated invariant chain is regulated by the alternatively spliced gene product, p41; pp. 10257–10261. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Fineschi B, Sakaguchi K, Appella E, Miller J. The proteolysic environment involved in MHC class II-restricted antigen presentation can be modulated by the p41 form of invariant chain. J. Immunol. 1996;157:3211–3215. [PubMed] [Google Scholar]
  54. Fuchs R, Schmid S, Mellman I. Vol. 86. 1989. A possible role for Na+, K+-ATPase in regulating ATP-dependent endosome acidification; pp. 539–543. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Fujishima A, Imai Y, Nomura T, Fujisawa Y, Yamamoto Y, Sugawara T. The crystal structure of human cathepsin L complexed with E-64. FEBS Lett. 1997;407:47–50. doi: 10.1016/s0014-5793(97)00216-0. [DOI] [PubMed] [Google Scholar]
  56. Fung-Leung W.P, Surh C.D, Liljedahl M, Pang J, Leturcq D, Peterson P.A. Antigen presentation and T cell development in H2-M-deficient mice. Science. 1996;271:1278–1281. doi: 10.1126/science.271.5253.1278. [DOI] [PubMed] [Google Scholar]
  57. Gedde-Dahl M, Freisewinkel L, Staschewski M, Schenck K, Koch N, Bakke O. Exon 6 is essential for invariant chain trimerization and induction of large endosomal structures. J. Biol. Chem. 1997;272:8281–8287. doi: 10.1074/jbc.272.13.8281. [DOI] [PubMed] [Google Scholar]
  58. Ghosh P, Amaya M, Mellins E, Wiley D.C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature. 1995;378:457–462. doi: 10.1038/378457a0. [DOI] [PubMed] [Google Scholar]
  59. Gieselmann V, Pohlmann R, Hasilik A, Von Figura K. Biosynthesis and transport of cathepsin D in cultured human fibroblasts. J. Cell Biol. 1983;97:1–5. doi: 10.1083/jcb.97.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Gorvel J.P, Escola J.M, Stang E, Bakke O. Invariant chain induces a delayed transport from early to late endosomes. J. Biol. Chem. 1995;270:2741–2746. doi: 10.1074/jbc.270.6.2741. [DOI] [PubMed] [Google Scholar]
  61. Greenbaum D, Medzihradszky K.F, Burlingame A, Bogyo M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 2000;7:569–581. doi: 10.1016/s1074-5521(00)00014-4. [DOI] [PubMed] [Google Scholar]
  62. Gregory C.D. CD14-dependent clearance of apoptotic cells: Relevance to the immune system. Curr. Opin. Immunol. 2000;12:27–34. doi: 10.1016/s0952-7915(99)00047-3. [DOI] [PubMed] [Google Scholar]
  63. Guerra C.B, Busch R, Doebele R.C, Liu W, Sawada T, Kwok W.W. Novel glycosylation of HLA-DRalpha disrupts antigen presentation without altering endosomal localization. J. Immunol. 1998;160:4289–4297. [PubMed] [Google Scholar]
  64. Guncar G, Podobnik M, Pubgercar J, Strukelj B, Turk V, Turk D. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: Location of the minichain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure. 1998;6:51–61. doi: 10.1016/s0969-2126(98)00007-0. [DOI] [PubMed] [Google Scholar]
  65. Guncar G, Podgercac G, Klemencic I, Turk V, Turk D. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 1999;18:793–803. doi: 10.1093/emboj/18.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Halfon S, Ford J, Foster J, Dowling L, Lucian L, Sterling M. Leukocystatin, a new class II cystatin expressed selectively by hematopoietic cells. J. Biol. Chem. 1998;273:16400–16408. doi: 10.1074/jbc.273.26.16400. [DOI] [PubMed] [Google Scholar]
  67. Harding C.V. Class II antigen processing: Analysis of compartments and functions. Crit. Rev. Immunol. 1996;16:13–29. doi: 10.1615/critrevimmunol.v16.i1.20. [DOI] [PubMed] [Google Scholar]
  68. Hofmann M.W, Honing S, Rodionov D, Dobberstein B, von Figura K, Bakke O. The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. J. Biol. Chem. 1999;274:36153–36158. doi: 10.1074/jbc.274.51.36153. [DOI] [PubMed] [Google Scholar]
  69. Honey K, Duff M, Beers C, Brissette W.H, Elliott E.A, Peters C. Cathepsin S regulates the expression of cathepsin L and the turnover of GILT in B lymphocytes. J. Biol. Chem. 2001;16:16. doi: 10.1074/jbc.M101851200. [DOI] [PubMed] [Google Scholar]
  70. Huh C.G, Hakansson K, Nathanson C.M, Thorgeirsson U.P, Jonsson N, Grubb A. Decreased metastatic spread in mice homozygous for a null allele of the cystatin C protease inhibitor gene. Mol. Pathol. 1999;52:332–540. doi: 10.1136/mp.52.6.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Illy C, Quraishi O, Wang J, Purisima E, Vernet T, Mort J.S. Role of the occluding loop in cathepsin B activity. J. Biol. Chem. 1997;272:1197–1202. doi: 10.1074/jbc.272.2.1197. [DOI] [PubMed] [Google Scholar]
  72. Inaba K, Turley S, Iyoda T, Yamaide F, Shimoyama S, Reise Sousa C. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 2000;191:927–936. doi: 10.1084/jem.191.6.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ishidoh K, Kominami E. Gene regulation and extracellular functions of procathepsin L. Biol. Chem. 1998;379:131–135. doi: 10.1515/bchm.1998.379.2.131. [DOI] [PubMed] [Google Scholar]
  74. Jensen P.E. Reduction of disulfide bonds during antigen processing: Evidence from a thioldependent insulin determinant. J. Exp. Med. 1991;174:1121–1130. doi: 10.1084/jem.174.5.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Jensen P.E. Acidification and disulfide reduction can be sufficient to allow intact proteins to bind class II MHC. J. Immunol. 1993;150:3347–5356. [PubMed] [Google Scholar]
  76. Jerala R, Zerovnik E, Kidric J, Turk V. pH-induced conformational transitions of the propeptide of human cathepsin L: A role for a molten globule state in zymogen activation. J. Biol. Chem. 1998;273:11498–11504. doi: 10.1074/jbc.273.19.11498. [DOI] [PubMed] [Google Scholar]
  77. Jiang W, Swiggard W.J, Heufler C, Peng M, Mirza A, Steinman R.M. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375:151–155. doi: 10.1038/375151a0. [DOI] [PubMed] [Google Scholar]
  78. Kampgen E, Koch N, Koch F, Stoger P, Heufler C, Schuler G. Vol. 88. 1991. Class II major histocompatibility complex molecules of murine dendritic cells: Synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture; pp. 3014–3018. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kasper D, Dittmer F, von Figura K, Pohlmann R. Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes. J. Cell. Biol. 1996;134:615–623. doi: 10.1083/jcb.134.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Katunuma N, Murata E, Kakegawa H, Matsui A, Tsuzuki H, Tsuge H. Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Lett. 1999;458:6–10. doi: 10.1016/s0014-5793(99)01107-2. [DOI] [PubMed] [Google Scholar]
  81. Koch N. Posttranslational modifications of the Ia-associated invariant protein p41 after gene transfer. Biochemistry. 1988;27:4097–4102. doi: 10.1021/bi00411a028. [DOI] [PubMed] [Google Scholar]
  82. Koch N, Harris A.W. Differential expression of the invariant chain in mouse tumor cells: Relationship to B lymphoid development. J. Immunol. 1984;132:12–15. [PubMed] [Google Scholar]
  83. Korant B.D, Strack P, Frey M.W, Rizzo C.J. A cellular anti-apoptosis protein is cleaved by the HIV-1 protease. Adv. Exp. Med. Biol. 1998;436:27–29. doi: 10.1007/978-1-4615-5373-1_3. [DOI] [PubMed] [Google Scholar]
  84. Koster A, Saftig P, Matzner U, von Figura K, Peters C, Pohlmann R. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins. EMBO J. 1993;12:5219–5223. doi: 10.1002/j.1460-2075.1993.tb06217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kropshofer H, Hammerling G.J, Vogt A.B. The impact of the non-classical MHC proteins HLA-DM and HLA-DO on loading of MHC class II molecules. Immunol. Rev. 1999;172:267–278. doi: 10.1111/j.1600-065x.1999.tb01371.x. [DOI] [PubMed] [Google Scholar]
  86. Lafuse W.P, Brown D, Castle L, Zwilling B.S. IFN-gamma increases cathepsin H mRNA levels in mouse macrophages. J. Leukoc. Biol. 1995;57:663–669. doi: 10.1002/jlb.57.4.663. [DOI] [PubMed] [Google Scholar]
  87. LaLonde J.M, Zhao B, Janson C.A.D, Alessio K.J, McQueney M.S, Orsini M.J. The crystal structure of human procathepsin K. Biochemistry. 1999;38:862–869. doi: 10.1021/bi9822271. [DOI] [PubMed] [Google Scholar]
  88. Larsen S.L, Pedersen L.O, Buus S, Stryhn A. T cell responses affected by aminopeptidase N (CDl3)-mediated trimming of major histocompatibility complex class Abound peptides. J. Exp. Med. 1996;184:183–189. doi: 10.1084/jem.184.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Lennon-Dumenil A.M, Roberts R.A, Valentijn K, Driesseu C, Overkleeft H.S, Erickson A, Peters P.J, Bikoff E, Ploegh H.L, Wolf Bryant P. The p41 isoform of invariant chain is a chaperon for cathepsin L. EMBO J. 2001;20:4055–4064. doi: 10.1093/emboj/20.15.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Li Q, Bever C.T., Jr. Modulation of interferon gamma induced increases in cathepsin B in THP-1 cells by adrenergic agonists and antagonists. Cell Biol. Int. 1998;22:13–20. doi: 10.1006/cbir.1997.0209. [DOI] [PubMed] [Google Scholar]
  91. Lindahl P, Abrahamson M, Bjork I. Interaction of recombinant human cystatin C with the cysteine proteinases papain and actinidin. Biochem. J. 1992;281:49–55. doi: 10.1042/bj2810049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Lingeman R.G, Joy D.S, Sherman M.A, Kane S.E. Effect of carbohydrate position on lysosomal transport of procathepsin L. Mol. Biol. Cell. 1998;9:1135–1147. doi: 10.1091/mbc.9.5.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Liuzzo J.P, Petanceska S.S, Moscatelli D, Devi L.A. Inflammatory mediators regulate cathepsin S in macrophages and microglia: A role in attenuating heparan sulfate interactions. Mol. Med. 1999;5:320–333. [PMC free article] [PubMed] [Google Scholar]
  94. Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid S.L. Intracellular transport of class II MHC molecules directed by invariant chain. Nature. 1990;348:600–605. doi: 10.1038/348600a0. [DOI] [PubMed] [Google Scholar]
  95. Mahnke K, Guo M, Lee S, Sepulveda H, Swain S.L, Nussenzweig M. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell Biol. 2000;151:673–684. doi: 10.1083/jcb.151.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Manoury B, Gregory W.F, Maizels R.M, Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr. Biol. 2001;11:447–451. doi: 10.1016/s0960-9822(01)00118-x. [DOI] [PubMed] [Google Scholar]
  97. Manoury B, Hewitt E.W, Morrice N, Dando E.M, Barrett A.J, Watts C. An asparaginyl endopeptidase processes a microbial antigen for class 11 MHC presentation. Nature. 1998;396:695–699. doi: 10.1038/25379. [DOI] [PubMed] [Google Scholar]
  98. Marie M.A, Taylor M.D, Blum J.S. Vol. 91. 1994. Endosomal aspartic proteinases are required for invariant-chain processing; pp. 2171–2175. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Martin W.D, Hicks G.G, Mendiratta S.K, Leva H.I, Ruley H.E, Van Kaer L. H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell. 1996;84:543–550. doi: 10.1016/s0092-8674(00)81030-2. [DOI] [PubMed] [Google Scholar]
  100. Mason R.W, Bartholomew L.T, Hardwick B.S. The use of benzyloxycarbonyl [125I]iodotyrosylalanyldiazomethane as a probe for active cysteine proteinases in human tissues. Biochem. J. 1989;263:945–949. doi: 10.1042/bj2630945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Mason R.W, Wilcox D, Wikstrom E, Shaw E.N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem. J. 1989;257:125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Maurer D, Ebner C, Reininger B, Fiebiger E, Kraft D, Kinet J.P. The high affinity IgE receptor (Fc epsilon RI) mediates IgE-dependent allergen presentation. J. Immunol. 1995;154:6285–6290. [PubMed] [Google Scholar]
  103. Maurer D, Fiebiger E, Reininger B, Ebner C, Petzelbauer P, Shi G.P. Fc epsilon receptor I on dendritic cells delivers IgE-bound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation. J. Immunol. 1998;161:2731–2739. [PubMed] [Google Scholar]
  104. Maurer D, Fiebiger E, Reininger B, Wolf-Winiski B, Jouvin M.H, Kilgus O. Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. J. Exp. Med. 1994;179:745–750. doi: 10.1084/jem.179.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. McGrath M.E. The lysosomal cysteine proteases. Anna. Rev. Biophys. Biomol. Struct. 1999;28:181–204. doi: 10.1146/annurev.biophys.28.1.181. [DOI] [PubMed] [Google Scholar]
  106. McGrath M.E, Klaus J.L, Barnes M.G, Bromme D. Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat. Struct. Biol. 1997;4:105–109. doi: 10.1038/nsb0297-105. [DOI] [PubMed] [Google Scholar]
  107. McGrath M.E, Palmer J.T, Bromme D, Somoza J.R. Crystal structure of human cathepsin S. Protein Sci. 1998;7:1294–1302. doi: 10.1002/pro.5560070604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Mellman L, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  109. Miyazaki T, Wolf P, Tourne S, Waltzinger C, Dierich A, Barois N. Mice lacking H2-M complexes, enigmatic elements of the MHC class II peptide-loading pathway. Cell. 1996;84:531–541. doi: 10.1016/s0092-8674(00)81029-6. [DOI] [PubMed] [Google Scholar]
  110. Mizuochi T, Yee S.T, Kasai M, Kakiuchi T, Muno D, Kominami E. Both cathepsin B and cathepsin D are necessary for processing of ovalbumin as well as for degradation of class II MHC invariant chain. Immunol. Lett. 1994;43:189–193. doi: 10.1016/0165-2478(94)90221-6. [DOI] [PubMed] [Google Scholar]
  111. Mort J.S, Buttle D.J. Cathepsin B. Int. J. Biochem. Cell Biol. 1997;29:715–720. doi: 10.1016/s1357-2725(96)00152-5. [DOI] [PubMed] [Google Scholar]
  112. Morton P.A, Zacheis M.L, Giacoletto K.S, Manning J.A, Schwartz B.D. Delivery of nascent MHC class II-invariant chain complexes to lysosomal compartments and proteolysis of invariant chain by cysteine proteases precedes peptide binding in B-lymphoblastoid cells. J. Immunol. 1995;154:137–150. [PubMed] [Google Scholar]
  113. Mosyak L, Zaller D.M, Wiley D.C. The structure of HLA-DM, the peptide exchange catalyst that loads antigen onto class 11 MHC molecules during antigen presentation. Immunity. 1998;9:377–383. doi: 10.1016/s1074-7613(00)80620-2. [DOI] [PubMed] [Google Scholar]
  114. Murata M, Miyashita S, Yokoo C, Tamai M, Hanada K, Hatayama K. Novel epoxysuccinyl peptides: Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991;280:307–310. doi: 10.1016/0014-5793(91)80318-w. [DOI] [PubMed] [Google Scholar]
  115. Musil D, Zucic D, Turk D, Engh R.A, Mayr I, Huber R. The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991;10:2321–2330. doi: 10.1002/j.1460-2075.1991.tb07771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Nagler D.K, Storer A.C, Portaro F.C, Carmona E, Juliano L, Menard R. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry. 1997;36:12608–12615. doi: 10.1021/bi971264+. [DOI] [PubMed] [Google Scholar]
  117. Nagler D.K, Sulea T, Menard R. Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Biochem. Biophys. Res. Commun. 1999;257:313–318. doi: 10.1006/bbrc.1999.0461. [DOI] [PubMed] [Google Scholar]
  118. Nagagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J. Cathepsin L: critical role in II degradation and CD4 T cell selection in the thymus. Science. 1998;280:450–453. doi: 10.1126/science.280.5362.450. [DOI] [PubMed] [Google Scholar]
  119. Nakagawa T.Y, Brissette W.H, Lira P.D, Griffiths R.J, Petrushova N, Stock J. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity. 1999;10:207–217. doi: 10.1016/s1074-7613(00)80021-7. [DOI] [PubMed] [Google Scholar]
  120. Nakagawa T.Y, Rudensky A.Y. The role of lysosomal proteinases in MHC class II mediated antigen processing and presentation. Immunol. Rev. 1999;172:121–129. doi: 10.1111/j.1600-065x.1999.tb01361.x. [DOI] [PubMed] [Google Scholar]
  121. Neefjes J.J, Ploegh H.L. Inhibition of endosomal proteolytic activity by leupeptin blocks surface expression of MHC class II molecules and their conversion to SDS resistance alpha beta heterodimers in endosomes. EMBO J. 1992;11:411–416. doi: 10.1002/j.1460-2075.1992.tb05069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Neefjes J.J, Stollorz V, Peters P.J, Geuze H.J, Ploegh H.L. The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell. 1990;61:171–183. doi: 10.1016/0092-8674(90)90224-3. [DOI] [PubMed] [Google Scholar]
  123. Nelson N. The vacuolar H(+)-ATP-ase-One of the most fundamental ion pumps in nature. J. Exp. Biol. 1992;172:19–27. doi: 10.1242/jeb.172.1.19. [DOI] [PubMed] [Google Scholar]
  124. Newmyer S.L, Schmid S.L. Dominant-interfering hsc70 mutants disrupt multiple stages of the clathrin coated vesicles cycle in vivo. J. Cell Biol. 2001 doi: 10.1083/jcb.152.3.607. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Nycander M, Estrada S, Mort J.S, Abrahamson M, Bjork I. Two-step mechanism of inhibition of cathepsin B by cystatin C due to displacement of the proteinase occluding loop. FEBS Lett. 1998;422:61–64. doi: 10.1016/s0014-5793(97)01604-9. [DOI] [PubMed] [Google Scholar]
  126. Odorizzi C.G, Trowbridge I.S, Xue L, Hopkins C.R, Davis C.D, Collawn J.F. Sorting signals in the MHC class II invariant chain cytoplasmic tail and transmembrane region determine trafficking to an endocytic processing compartment. J. Cell Biol. 1994;126:317–330. doi: 10.1083/jcb.126.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Ogrinc T, Dolenc I, Ritonja A, Turk V. Purification of the complex of cathepsin L and the MHC class II-associated invariant chain fragment from human kidney. FEBS Lett. 1993;336:555–559. doi: 10.1016/0014-5793(93)80875-u. [DOI] [PubMed] [Google Scholar]
  128. Ojcius D.M, Gachelin G, Dautry-Varsat A. Presentation of antigens derived from microorganisms residing in host-cell vacuoles. Trends Microbiol. 1996;4:53–59. doi: 10.1016/0966-842X(96)81511-3. [DOI] [PubMed] [Google Scholar]
  129. O'Sullivan D.M, Noonan D, Quaranta V. Four Ia invariant chain forms derive from a single gene by alternate splicing and alternate initiation of transcription/translation. J. Exp. Med. 1987;166:444–460. doi: 10.1084/jem.166.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Palmer J.T, Rasnick D, Klaus J.L, Bromme D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 1995;38:3193–3196. doi: 10.1021/jm00017a002. [DOI] [PubMed] [Google Scholar]
  131. Panjwani N, Akbari O, Garcia S, Brazil M, Stockinger B. The HSC73 molecular chaperone: Involvement in MHC class II antigen presentation. J. Immunol. 1999;163:1936–1942. [PubMed] [Google Scholar]
  132. Pavlova A, Krupa J.C, Mort J.S, Abrahamson M, Bjork I. Cystatin inhibition of cathepsin B requires dislocation of the proteinase occluding loop: Demonstration by release of loop anchoring through mutation of his110. FEBS Lett. 2000;487:156–160. doi: 10.1016/s0014-5793(00)02337-1. [DOI] [PubMed] [Google Scholar]
  133. Peterson M, Miller J. Antigen presentation enhanced by the alternatively spliced invariant chain gene product p41. Nature. 1992;357:596–598. doi: 10.1038/357596a0. [DOI] [PubMed] [Google Scholar]
  134. Phan U.T, Arunachalam B, Cresswell P. Gamma-interferon-inducible lysosomal thiol reductase (GILT). Maturation, activity, and mechanism of action. J. Biol. Chem. 2000;275:25907–25914. doi: 10.1074/jbc.M003459200. [DOI] [PubMed] [Google Scholar]
  135. Pierre P, Mellman I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell. 1998;93:1135–1145. doi: 10.1016/s0092-8674(00)81458-0. [DOI] [PubMed] [Google Scholar]
  136. Pieters J, Bakke O, Dobberstein B. The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J. Cell Sci. 1993;106:831–846. doi: 10.1242/jcs.106.3.831. [DOI] [PubMed] [Google Scholar]
  137. Pinet V.M, Long E.O. Peptide loading onto recycling HLA-DR molecules occurs in early endosomes. Eur. J. Immunol. 1998;28:799–804. doi: 10.1002/(SICI)1521-4141(199803)28:03<799::AID-IMMU799>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  138. Pliura D.H, Bonaventura B.J, Smith R.A, Coles P.J, Krantz A. Comparative behaviour of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases. Biochem. J. 1992;288:759–762. doi: 10.1042/bj2880759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Podobnik M, Kuhelj R, Turk V, Turk D. Crystal structure of the wild-type human procathepsin B at 2.5A resolution reveals the native active site of a papain-like cysteine protease zymogen. J. Mol. Biol. 1997;271:774–788. doi: 10.1006/jmbi.1997.1218. [DOI] [PubMed] [Google Scholar]
  140. Pohlmann R, Boeker M.W, von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J. Biol. Chem. 1995;270:27311–27318. doi: 10.1074/jbc.270.45.27311. [DOI] [PubMed] [Google Scholar]
  141. Pol E, Olsson S.L, Estrada S, Prasthofer T.W, Bjork I. Characterization by spectroscopic, kinetic and equilibrium methods of the interaction between recombinant human cystatin A (stefin A) and cysteine proteinases. Biochem. J. 1995;311:275–282. doi: 10.1042/bj3110275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Pond L, Watts C. Functional early endosomes are required for maturation of major histocompatibility complex class II molecules in human B lymphoblastoid cells. J. Biol. Chem. 1999;274:18049–18054. doi: 10.1074/jbc.274.25.18049. [DOI] [PubMed] [Google Scholar]
  143. Prigozy T.I, Siehng P.A, Clemens D, Stewart P.L, Behar S.M, Porcelli S.A. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity. 1997;6:187–197. doi: 10.1016/s1074-7613(00)80425-2. [DOI] [PubMed] [Google Scholar]
  144. Punturieri A, Filippov S, Allen E, Caras I, Murray R, Reddy V. Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J. Exp. Med. 2000;192:789–799. doi: 10.1084/jem.192.6.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Pure E, Inaba K, Crowley M.T, Tardelli L, Witmer-Pack M.D, Ruberti G. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J. Exp. Med. 1990;172:1459–1469. doi: 10.1084/jem.172.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Quaaishi O, Nagler D.K, Fox T, Sivaraman J, Cygler M, Mort J.S. The occluding loop in cathepsin B defines the pH dependence of inhibition by its propeptide. Biochemistry. 1999;38:5017–5023. doi: 10.1021/bi981950o. [DOI] [PubMed] [Google Scholar]
  147. Reilly J.J, Jr, Mason R.W, Chen P, Joseph L.J, Sukhatme V.P, Yee R. Synthesis and processing of cathepsin L, an elastase, by human alveolar macrophages. Biochem. J. 1989;257:493–498. doi: 10.1042/bj2570493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Reyes V.E, Lu S, Humphreys R.E. Cathepsin B cleavage of Ii from class II MHC alpha- and beta-chains. J. Immunol. 1991;146:3877–3880. [PubMed] [Google Scholar]
  149. Riese R.J, Chapman H.A. Cathepsins and compartmentalization in antigen presentation. Curr. Opin. Immunol. 2000;12:107–113. doi: 10.1016/s0952-7915(99)00058-8. [DOI] [PubMed] [Google Scholar]
  150. Riese R.J, Wolf P.R, Bromme D, Natkin L.R, Villadangos J.A, Ploegh H.L. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity. 1996;4:357–366. doi: 10.1016/s1074-7613(00)80249-6. [DOI] [PubMed] [Google Scholar]
  151. Roche P.A, Cresswell P. Vol. 88. 1991. Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules; pp. 3150–3154. (Proc. Natl. Acad. Sci. USA). [PubMed] [Google Scholar]
  152. Roche P.A, Teletski C.L, Stang E, Bakke O, Long E.O. Vol. 90. 1993. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization; pp. 8581–8585. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Rodriguez G.M, Diment S. Role of cathepsin D in antigen presentation of ovalbumin. J. Immunol. 1992;149:2894–2898. [PubMed] [Google Scholar]
  154. Rodriguez G.M, Diment S. Destructive proteolysis by cysteine proteases in antigen presentation of ovalbumin. Eur. J. Immunol. 1995;25:1823–1827. doi: 10.1002/eji.1830250705. [DOI] [PubMed] [Google Scholar]
  155. Romagnoli P, Layet C, Yewdell J, Bakke O, Germain R.N. Relationship between invariant chain expression and major histocompatibility complex class II transport into early and late endocytic compartments. J. Exp. Med. 1993;177:583–596. doi: 10.1084/jem.177.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Roth W, Deussing J, Botchkarev V.A, Pauly-Evers M, Saftig P, Hafner A. Cathepsin L deficiency as molecular defect of furless: Hyperproliferation of keratinocytes and pertubation of hair follicle cycling. Faseb J. 2000;14:2075–2086. doi: 10.1096/fj.99-0970com. [DOI] [PubMed] [Google Scholar]
  157. Sadegh-Nasseri S, Germain R.N. A role for peptide in determining MHC class II structure. Nature. 1991;353:167–170. doi: 10.1038/353167a0. [DOI] [PubMed] [Google Scholar]
  158. Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 1995;14:3599–3608. doi: 10.1002/j.1460-2075.1995.tb00029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products. J. Exp. Med. 1995;182:389–400. doi: 10.1084/jem.182.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Santambrogio L, Sato A.K, Carven G.J, Belyanskaya S.L, Strominger J.L, Stern L.J. Vol. 96. 1999. Extracellular antigen processing and presentation by immature dendritic cells; pp. 15056–15061. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Santambrogio L, Sato A.K, Fischer E.R, Dorf M.E, Stern L.J. Vol. 96. 1999. Abundant empty class II MHC molecules on the surface of immature dendritic cells; pp. 15050–15055. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Schlossman D.M, Schmid S.L, Braell W.A, Rothman J.E. An enzyme that removes clathrin coats: Purification of an uncoating ATPase. J. Cell Biol. 1984;99:723–733. doi: 10.1083/jcb.99.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Sealy L, Mota F, Rayment N, Tatnell P, Kay J, Chain B. Regulation of cathepsin E expression during human B cell differentiation in vitro. Eur. J. Immunol. 1996;26:1838–1843. doi: 10.1002/eji.1830260826. [DOI] [PubMed] [Google Scholar]
  164. Shaw E. Peptidyl diazomethanes as inhibitors of cysteine and serine proteinases. Methods Enzymol. 1994;244:649–656. doi: 10.1016/0076-6879(94)44048-4. [DOI] [PubMed] [Google Scholar]
  165. Shaw E, Angliker H, Rauber P, Walker B, Wikstrom P. Peptidyl fluoromethyl ketones as thiol protease inhibitors. Biomed. Biochim. Acta. 1986;45:1397–1403. [PubMed] [Google Scholar]
  166. Shi G.P, Bryant R.A, Riese R, Verhelst S, Driessen C, Li Z. Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J. Exp. Med. 2000;191:1177–1186. doi: 10.1084/jem.191.7.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Shi G.P, Munger J.S, Meara J.P, Rich D.H, Chapman H.A. Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J. Biol. Chem. 1992;267:7258–7262. [PubMed] [Google Scholar]
  168. Shi G.P, Villadangos J.A, Dranoff G, Small C, Gu L, Haley K.J. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity. 1999;10:197–206. doi: 10.1016/s1074-7613(00)80020-5. [DOI] [PubMed] [Google Scholar]
  169. Siemasko K, Clark M.R. The control and facilitation of MHC class II antigen processing by the BCR. Curr. Opin. Immunol. 2001;13:32–36. doi: 10.1016/s0952-7915(00)00178-3. [DOI] [PubMed] [Google Scholar]
  170. Sotiropoulou G, Anisowicz A, Sager R. Identification, cloning, and characterization of cystatin M, a novel cysteine proteinase inhibitor, down-regulated in breast cancer. J. Biol. Chem. 1997;272:903–910. doi: 10.1074/jbc.272.2.903. [DOI] [PubMed] [Google Scholar]
  171. Stoka V, Nycander M, Lenarcic B, Labriola C, Cazzulo J.J, Bjork I. Inhibition of cruzipain, the major cysteine proteinase of the protozoan parasite, Trypanosoma cruzi, by proteinase inhibitors of the cystatin superfamily. FEBS Lett. 1995;370:101–104. doi: 10.1016/0014-5793(95)00798-e. [DOI] [PubMed] [Google Scholar]
  172. Strubin M, Long E.O, Mach B. Two forms of the Ia antigen-associated invariant chain result from alternative initiations at two in-phase AUGs. Cell. 1986;47:619–625. doi: 10.1016/0092-8674(86)90626-4. [DOI] [PubMed] [Google Scholar]
  173. Stubbs M.T, Laber B, Bode W, Huber R, Jerala R, Lenarcic B. The refined 2.4 Å X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: A novel type of proteinase inhibitor interaction. Embo J. 1990;9:1939–1947. doi: 10.1002/j.1460-2075.1990.tb08321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Takaesu N.T, Lower J.A, Robertson E.J, Bikoff E.K. Major histocompatibility class II peptide occupancy, antigen presentation, and CD4+ T cell function in mice lacking the p41 isoform of invariant chain. Immunity. 1995;2:385–396. doi: 10.1016/1074-7613(95)90122-1. [DOI] [PubMed] [Google Scholar]
  175. Takaesu N.T, Lower J.A, Yelon D, Robertson E.J, Bikoff E.K. In vivo functions mediated by the p41 isoform of the MHC class II-associated invariant chain. J. Immunol. 1997;158:187–199. [PubMed] [Google Scholar]
  176. Tan M.C, Mommaas A.M, Drijfhout J.W, Jordens R, Onderwater J.J, Verwoerd D. Manrose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur. J. Immunol. 1997;27:2426–2435. doi: 10.1002/eji.1830270942. [DOI] [PubMed] [Google Scholar]
  177. Tao K, Steams N.A, Dong J, Wu Q.L, Sahagian G.G. The proregion of cathepsin L is required for proper folding, stability, and ER exit. Arch. Biochem. Biophys. 1994;311:19–27. doi: 10.1006/abbi.1994.1203. [DOI] [PubMed] [Google Scholar]
  178. Tartakoff A.M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1993;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  179. Thery C, Amigorena S. The cell biology of antigen presentation in dendritic cells. Curr. Opin. Immunol. 2001;13:45–51. doi: 10.1016/s0952-7915(00)00180-1. [DOI] [PubMed] [Google Scholar]
  180. Thorens B, Vassalli P. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature. 1986;321:618–620. doi: 10.1038/321618a0. [DOI] [PubMed] [Google Scholar]
  181. Towatari T, Nikawa T, Murata M, Yokoo C, Tamai M, Hanada K. Novel epoxysuccinyl peptides. A selective inhibitor of cathepsin B, in vivo. FEBS Lett. 1991;280:311–315. doi: 10.1016/0014-5793(91)80319-x. [DOI] [PubMed] [Google Scholar]
  182. Tsuge H, Nishimura T, Tada Y, Asao T, Turk D, Turk V. Inhibition mechanism of cathepsin L-specific inhibitors based on the crystal structure of papain-CLIK148 complex. Biochem. Biophys. Res. Commun. 1999;266:411–416. doi: 10.1006/bbrc.1999.1830. [DOI] [PubMed] [Google Scholar]
  183. Turk B, Dolenc I, Zerovnik E, Turk D, Gubensek F, Turk V. Human cathepsin B is a metastable enzyme stabilized by specific ionic interactions associated with the active site. Biochemistry. 1994;33:14800–14806. doi: 10.1021/bi00253a019. [DOI] [PubMed] [Google Scholar]
  184. Turk B, Stoka V, Bjork I, Boudier C, Johansson G, Dolenc I. High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen. Protein Sci. 1995;4:1874–1880. doi: 10.1002/pro.5560040922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Turk B, Stoka V, Turk V, Johansson G, Cazzulo J.J, Bjork I. High-molecular-weight kininogen binds two molecules of cysteine proteinases with different rate constants. FEBS Lett. 1996;391:109–112. doi: 10.1016/0014-5793(96)00611-4. [DOI] [PubMed] [Google Scholar]
  186. Turk B, Turk D, Turk V. Lysosomal cysteine proteases: More than scavengers. Biochim. Biophys. Acta. 2000;1477:98–111. doi: 10.1016/s0167-4838(99)00263-0. [DOI] [PubMed] [Google Scholar]
  187. Turk B, Turk V, Turk D. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol. Chem. 1997;378:141–150. [PubMed] [Google Scholar]
  188. Turk D, Guncar G, Podobnik M, Turk B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem. 1998;379:137–147. doi: 10.1515/bchm.1998.379.2.137. [DOI] [PubMed] [Google Scholar]
  189. Turk D, Guncar G, Turk V. The p41 fragment story. IUBMB Life. 1999;48:7–12. doi: 10.1080/713803477. [DOI] [PubMed] [Google Scholar]
  190. Turk D, Podobnik M, Kuhelj R, Dolinar M, Turk V. Crystal structures of human procathepsin B at 3.2 and 3.3 angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett. 1996;384:211–214. doi: 10.1016/0014-5793(96)00309-2. [DOI] [PubMed] [Google Scholar]
  191. Turk D, Podobnik M, Popovic T, Katunuma N, Bode W, Huber R. Crystal structure of cathepsin B inhibited with CA030 at 2.0-Å resolution: A basis for the design of specific epoxysuccinyl inhibitors. Biochemistry. 1995;34:4791–4797. doi: 10.1021/bi00014a037. [DOI] [PubMed] [Google Scholar]
  192. Turk V, Bode W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. doi: 10.1016/0014-5793(91)80804-c. [DOI] [PubMed] [Google Scholar]
  193. van Bergen J, Ossendorp F, Jordens R, Mommaas A.M, Drijfhout J.W, Koning F. Get into the groove! Targeting antigens to MHC class II. Immunol. Rev. 1999;172:87–96. doi: 10.1111/j.1600-065x.1999.tb01358.x. [DOI] [PubMed] [Google Scholar]
  194. van Noort J.M, Jacobs M.J. Cathepsin D, but not cathepsin B, releases T cell stimulatory fragments from lysozyme that are functional in the context of multiple murine class II MHC molecules. Eur. J. Immunol. 1994;24:2175–2180. doi: 10.1002/eji.1830240936. [DOI] [PubMed] [Google Scholar]
  195. Vernet T, Berti P.J, de Montigny C, Musil R, Tessier D.C, Menard R. Processing of the papain precursor: The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. J. Biol. Chem. 1995;270:10838–10846. doi: 10.1074/jbc.270.18.10838. [DOI] [PubMed] [Google Scholar]
  196. Vidard L, Rock K.L, Benacerraf B. Diversity in MHC class II ovalbumin T cell epitopes generated by distinct proteases. J. Immunol. 1992;149:498–504. [PubMed] [Google Scholar]
  197. Villadangos J.A, Bryant R.A, Deussing J, Driessen C, Lennon-Dumenil A.M, Riese R.J. Proteases involved in M HC class II antigen presentation. Immunol. Rev. 1999;172:109–120. doi: 10.1111/j.1600-065x.1999.tb01360.x. [DOI] [PubMed] [Google Scholar]
  198. Villadangos J.A, Ploegh H.L. Proteolysis in M HC class II antigen presentation: Who's in charge? Immunity. 2000;12:233–239. doi: 10.1016/s1074-7613(00)80176-4. [DOI] [PubMed] [Google Scholar]
  199. Villadangos J.A, Riese R.J, Peters C, Chapman H.A, Ploegh H.L. Degradation of mouse invariant chain: Roles of cathepsins S and D and the influence of major histocompatibility complex polymorphism. J. Exp. Med. 1997;186:549–560. doi: 10.1084/jem.186.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]; Villadangos J.A, Riese R.J, Peters C, Chapman H.A, Ploegh H.L. J. Exp. Med. 1997;186(11):5945. doi: 10.1084/jem.186.4.549. Published erratum appears in. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Villadangos J.A, Cardoso M, Steptoe R.J, van Berkel D, Pooley J, Carbone F.R, Shortman K. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity. 2001;14:739–749. doi: 10.1016/s1074-7613(01)00148-0. [DOI] [PubMed] [Google Scholar]
  201. Vogt A.B, Kropshofer H, Moldenhauer G, Hammerhng G.J. Vol. 93. 1996. Kinetic analysis of peptide loading onto HLA-DR molecules mediated by HLA-DM; pp. 9724–9729. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Wang Z, Zheng T, Zhu Z, Homer R.J, Riese R.J, Chapman H.A., Jr. Interferon gamma induction of pulmonary emphysema in the adult murine lung. J. Exp. Med. 2000;192:1587–1600. doi: 10.1084/jem.192.11.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol. 1997;15:821–850. doi: 10.1146/annurev.immunol.15.1.821. [DOI] [PubMed] [Google Scholar]
  204. Watts C. Antigen processing in the endocytic compartment. Curr. Opin. Immunol. 2001;13:26–31. doi: 10.1016/s0952-7915(00)00177-1. [DOI] [PubMed] [Google Scholar]
  205. Wex T, Levy B, Wex H, Bromme D. Human cathepsins W and F form a new subgroup of cathepsins that is evolutionary separated from the cathepsin B- and L-like cysteine proteases. Adv. Exp. Med. Biol. 2000;477:271–280. doi: 10.1007/0-306-46826-3_29. [DOI] [PubMed] [Google Scholar]
  206. Wolf P.R, Ploegh H.L. How MHC class II molecules acquire peptide cargo: Biosynthesis and trafficking through the endocytic pathway. Annu. Rev. Cell. Dev. Biol. 1995;11:267–306. doi: 10.1146/annurev.cb.11.110195.001411. [DOI] [PubMed] [Google Scholar]
  207. Woo J.T, Shinohara C, Sakai K, Hasumi K, Endo A. Inhibition of the acidification of endosomes and lysosomes by the antibiotic concanamycin B in macrophage J774. Eur J. Biochem. 1992;207:383–389. doi: 10.1111/j.1432-1033.1992.tb17061.x. [DOI] [PubMed] [Google Scholar]
  208. Xing R, Addington A.K, Mason R.W. Quantification of cathepsins B and L in cells. Biochem. J. 1998;332:499–505. doi: 10.1042/bj3320499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 1991;266:17707–17712. [PubMed] [Google Scholar]
  210. Zhang T, Maekawa Y, Hanba J, Dainichi T, Nashed B.F, Hisaeda H. Lysosomal cathepsin B plays an important role in antigen processing, while cathepsin D is involved in degradation of the invariant chain inovalbumin-immunized mice. Immunology. 2000;100:13–20. doi: 10.1046/j.1365-2567.2000.00000.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Zhao B, Janson C.A, Amegadzie B.Y, D'Alessio K, Griffin C, Hanning C.R. Crystal structure of human osteoclast cathepsin K complex with E-64. Nat. Struct. Biol. 1997;4:109–111. doi: 10.1038/nsb0297-109. [DOI] [PubMed] [Google Scholar]
  212. Zhong G, Romagnoli P, Germain R.N. Related leucine-based cytoplasmic targeting signals in invariant chain and major histocompatibility complex class 11 molecules control endocytic presentation of distinct determinants in a single protein. J. Exp. Med. 1997;185:429–1138. doi: 10.1084/jem.185.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Advances in Immunology are provided here courtesy of Elsevier

RESOURCES