Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 9;161(2):479–487. doi: 10.1016/0042-6822(87)90142-5

Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site

Willem Luytjes , Lawrence S Sturman , Peter J Bredenbee , Jeroen Charite , Bernard AM van der Zeijst , Marian C Horzinek , Willy JM Spaan ∗,1
PMCID: PMC7130946  PMID: 2825419

Abstract

The nucleotide sequence of the peplomer (E2) gene of MHV-A59 was determined from a set of overlapping cDNA clones. The E2 gene encodes a protein of 1324 amino acids including a hydrophobic signal peptide. A second large hydrophobic domain is found near the COOH terminus and probably represents the membrane anchor. Twenty glycosylation sites are predicted. Cleavage of the E2 protein results in two different 90K species, 90A and 90B (L. S. Sturman, C. S. Ricard, and K. V. Holmes (1985)J. Virol. 56, 904–911), and activates cell fusion. Protein sequencing of the trypsin-generated N-terminus revealed the position of the cleavage site. 90A and 90B could be identified as the C-terminal and the N-terminal parts, respectively. Amino acid sequence comparison of the A59 and 1HM E2 proteins showed extensive homology and revealed a stretch of 89 amino acids in the 90B region of the A59 E2 protein that is absent in JHM.

References

  1. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Vol. 308. 1984. Sequence and topology of a model intracellular membrane protein, El glycoprotein, from a coronavirus; pp. 751–752. (Nature (London)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong J., Smeekens S., Spaan W., Rottier P., Van Der Zeijst B. Cloning and sequencing the nucleocapsid and El genes of coronavirus. In: Rottier P.J.M., Van der Zeijst B.A.M., Spaan W.J.M., Horzinek M.C., editors. Molecular Biology and Pathogenesis of Coronaviruses. Vol. 173. Plenum; New York/London: 1984. pp. 155–162. (Adv. Exp. Med. Biol.). [Google Scholar]
  3. Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  4. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. NucleicAcids Res. 1979;7:1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bredenbeek P.J., Charite J., Noten J.F.H., Luytjes W., Horzinek M.C., Van Der Zeijst B.A.M., Spaan W.J.M. Plenum; New York/London: 1987. Sequences involved in the replication of coronaviruses. (Adv. Exp. Med. Biol.). in press. [DOI] [PubMed] [Google Scholar]
  6. Buchmeier M.J., Lewicki H.A., Talbot P.J., Knobler R.L. Murine hepatitis virus-4 (strain JHM) induced neurologic disease is modulated in vivo by monoclonal antibody. Virology. 1984;132:261–270. doi: 10.1016/0042-6822(84)90033-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cavanagh D., Davis P.J., Pappin D.J.C., Binns M.W., Boursnell M.E.G., Brown T.D.K. Coronavirus IBV: Partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Res. 1986;4:133–143. doi: 10.1016/0168-1702(86)90037-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dalziel R.G., Lampert P.W., Talbot P.J., Buchmeier M.J. Site specific alteration of murine hepatitis virus type-4 (MHV-4) peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Groot R.J., Lenstra J.A., Luytjes W., Niesters H.G.M., Horzinek M.C., Van Der Zeijst B.A.M., Spaan W.J.M. Plenum; New York/London: 1987. Sequence and structure of the coronavirus peplomer protein. (Adv. Exp. Med. BioL). in press. [DOI] [PubMed] [Google Scholar]
  11. Dente L., Cesareni G., Cortese R. pEMBL: A new family of single stranded plasmids. Nucleic Acids Res. 1983;11:1645–1655. doi: 10.1093/nar/11.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dowling P.C., Giorgi C., Roux L., Dethlefsen L.A., Galantowlcz M.E., Blumberg B.M., Kolakofsky D. Vol. 80. 1983. Molecular cloning of the 3′-proximal third of Sendai virus genome; pp. 5213–5216. (Proc. Ned. Aced. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984;179:125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  14. Feinberg A.P., Vogelstein B. DNA probes by random priming with Klenow synthesis. Anal. Biochem. 1983;132:6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  15. Fleming J.O., Stohlman S.A., Harmon R.C., Lai M.M.C., Frelinger J.A., Weiner L.P. Antigenic relationships of murine coronaviruses: Analysis using monoclonal antibodies to JHM (MHV-4) virus. Virology. 1983;131:296–307. doi: 10.1016/0042-6822(83)90498-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fleming J.O., Trousdale M.D., El-Zaatari F.A.K., Stohlman S.A., Weiner L.P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J. Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frana M.F., Behnke J.N., Sturman L.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Host-dependent differences in proteolytic cleavage and cell fusion. J. Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gething M.J., White J.M., Waterfield M.D. Vol. 75. 1978. Purification of the fusion protein of Sendai virus: Analysis of the NH2-terminal sequence generated during precursor activation; pp. 2737–2740. (Proc. Nail. Aced. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gubler U., Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene. 1983;25:263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  20. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983;166:557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  21. Henderson L.E., Oroszlan S., Konigsberg W. A mlcromethod for complete removal of dodecyl sulfate from proteins by ion-pair extraction. Anal. Biochem. 1979;93:153–157. [PubMed] [Google Scholar]
  22. Hewett-Emmett D., Venta P.J., Tashian R.E. Features of gene organization and expression that are providing unique insights into molecular evolution and systematics. In: Goodman M., editor. Macromolecular Sequences in Systematics and Evolutionary Biology. Plenum; New York/London: 1982. pp. 357–405. [Google Scholar]
  23. Holmes K.V., Frana M.F., Robbins S.G., Sturman L.S. Coronavirus maturation. In: Rottier P.J.M., Van der Zeijst B.A.M., Spaan W.J.M., Horzinek M.C., editors. Molecular Biology and Pathogenesis of Coronaviruses. Vol. 173. Plenum; New York/London: 1984. pp. 37–52. (Adv. Exp. Med. Biol.). [Google Scholar]
  24. Lehrach H., Diamond D., Wozney J.M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977;16:4743–4750. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  25. Lipman D.I., Pearson W.R. Rapid and sensitive protein similarity searches. Science. 1985;227:1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  26. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, New York: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  27. Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 1984;138:267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
  28. Messing J. New M13 vectors for cloning. In: Wu R., Grossman L., Moldave K., editors. Vol. 101. Academic Press; New York: 1983. pp. 20–79. (Methods in Enzymology). [Google Scholar]
  29. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 1986;3:418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  30. Neuberger A., Gottschalk A., Marshall R.0., Spiro R.G. Carbohydrate-peptide linkages in glycoproteins and methods for their elucidation. In: Gottschalk A., editor. The Glycoproteins: Their Composition, Structure and Function. Elsevier; Amsterdam: 1972. pp. 450–490. [Google Scholar]
  31. Nieman H., Klenk H.D. Coronavirus glycoprotein El, a new type of viral glycoprotein. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Niesters H.G.M., Lenstra J.A., Spaan W.J.M., Zijderveld A.J., Bleumink-Pluym N.M.C., Hong F., van Scharrenburg G.J.M., Horzinek M.C., Van Der Zeiist B.A.M. The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Res. 1986;5:253–263. doi: 10.1016/0168-1702(86)90022-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peacock S.L., Mciver C.M., Monohan J.J. Transformation of E. coli using homopolymer linked plasmid chimeras. Biochim. Biophys. Acta. 1981;655:243–250. doi: 10.1016/0005-2787(81)90014-9. [DOI] [PubMed] [Google Scholar]
  34. Pfleiderer M., Skinner M.A., Siddell S.G. Coronavirus MHV-JHM: Nucleotide sequence of the mRNA that encodes the membrane protein. Nucleic Acids Res. 1986;14:6338. doi: 10.1093/nar/14.15.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Repp R., Tamura T., Boschek C.B., Wege H., Schwarz R.T., Niemann H. The effects of processing inhibitors of Nlinked oIigosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of coronavirus particles. J. Biol. Chem. 1985;260:15,873–15,879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ricard C.S., Sturman L.S. Isolation of the subunits of the coronavirus envelope glycoprotein E2 by hydroxyapatite highperformance liquid chromatography. J. Chromatogr. 1985;326:191–197. doi: 10.1016/S0021-9673(01)87445-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Richardson C.D., Scheid A., Choppin P.W. Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology. 1980;105:205–222. doi: 10.1016/0042-6822(80)90168-3. [DOI] [PubMed] [Google Scholar]
  38. Roberts C., Wilson G.L. DNA probes by random priming with Klenow synthesis. Focus. 1985;7-3:16. [Google Scholar]
  39. Rottier P.J.M., Spaan W.J.M., Horzinek M.C., Van Der Zeijst B.A.M. Translation of three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes. J. Virol. 1981;38:20–26. doi: 10.1128/jvi.38.1.20-26.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain terminating inhibitors; pp. 5463–5467. (Proc. Nad. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schmidt I., Skinner M., Siddell S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  42. Siddell S.G., Anderson R., Cavanagh D., Fujiwara K., Klenk H.D., Macnaughton M.R., Pensaert M., Stohlman S.A., Sturman L., Van Der Zeiist B.A.M. Coronaviridae. Intervirology. 1983;20:181–189. doi: 10.1159/000149390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Siddell S., Wege H., Barthel A., Ter Meulen V. Coronavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 1981;53:145–155. doi: 10.1099/0022-1317-53-1-145. [DOI] [PubMed] [Google Scholar]
  44. Siddell S., Wege H., Ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  45. Skinner M.A., Siddell S.G. Coronavirus JHM: Nucleotide sequence of the mRNA that encodes the nucleocapsid protein. Nucleic Acids Res. 1983;11:5045–5054. doi: 10.1093/nar/11.15.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith H.0., Birnstiel M.L. A simple method for DNA restriction site mapping. Nucleic Acids Res. 1976;3:2387–2395. doi: 10.1093/nar/3.9.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Spaan W.J.M., Rottier P.J.M., Horzinek M.C., Van Der Zeijst B.A.M. Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59) Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Spaan W., Delius H., Skinner M.A., Armstrong J., Rottier P., Smeekens S., Siddell S.G., Van Der Zeijst B. Transcription strategy of coronaviruses: Fusion of non-contiguous sequences during mRNA synthesis. In: Rottier P.J.M., Van der Zeijst B.A.M., Spaan W.J.M., Horzinek M.C., editors. Molecular Biology and Pathogenesis of Coronaviruses. Vol. 173. Plenum; New York/London: 1984. pp. 173–196. (Adv. Exp. Med. Biol.). [DOI] [PubMed] [Google Scholar]
  49. Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res. 1982;10:2951–2961. doi: 10.1093/nar/10.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Staden R. The current status and portability of our sequence handling software. Nucleic Acids Res. 1986;14:217–233. doi: 10.1093/nar/14.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sturman L.S. Characterization of a coronavirus. I. Structural proteins: Effects of preparative conditions on the migration of protein in polyacrylamide gels. Virology. 1977;77:637–649. doi: 10.1016/0042-6822(77)90488-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. II. Glycoproteins of the viral envelope: Tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sturman L.S., Holmes K.V. The novel glycoproteins of coronaviruses. Trends Bio. Sci. 1985;10:17–20. [Google Scholar]
  55. Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Talbot P.J., Buchmeier M.J. Antigenic variation among murine coronaviruses: Evidence for polymorphism on the peplomer glycoprotein, E2. Virus Res. 1985;2:317–328. doi: 10.1016/0168-1702(85)90028-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Von Heune G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986;14:4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wege H., Siddell S., Ter Meulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES