Publisher Summary
In addition to its many other functions, the plasma membrane of eukaryotic cells serves as a barrier against invading parasites and viruses. It is not permeable to ions and to low molecular weight solutes, let alone to proteins and polynucleotides. Yet it is clear that viruses are capable of transferring their genome and accessory proteins into the cytosol or into the nucleus, and thus infect the cell. While the detailed mechanisms remain unclear for most animal viruses, a general theme is apparent like other stages in the replication cycle; their entry depends on the activities of the host cell. In order to take up nutrients, to communicate with other cells, to control the intracellular ion balance, and to secrete substances, cells have a variety of mechanisms for bypassing and modifying the barrier properties imposed by their plasma membrane. It is these mechanisms, and the molecules involved in them, that viruses exploit.
References
- Ali M.A., Butcher M., Ghosh H.P. Expression and nuclear localization of biologically active fusion glycoprotein g B of herpes simplex virus in mammalian cells using cloned DNA. Proc. Natl. Acad. Sci. U. S. A. 1987;84:5675–5679. doi: 10.1073/pnas.84.16.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson K.B., Nexø B.A. Entry of murine retrovirus into mouse fibro-blasts. Virology. 1983;125:85–98. doi: 10.1016/0042-6822(83)90065-x. [DOI] [PubMed] [Google Scholar]
- Asano K., Asano A. Why is a specific amino acid sequence of F-glycoprotein required for membrane fusion between envelop of HVJ and target membrane? Biochem. Int. 1985;10:115–122. [PubMed] [Google Scholar]
- Bauer P.G., Barth O.M., Pereira M.A. Endocytosis of the human immunodeficiency virus in vitro. Mem. Inst. Oswaldo Cruz. 1987;82:449–450. doi: 10.1590/s0074-02761987000300023. [DOI] [PubMed] [Google Scholar]
- Blumenthal R., Bali-Puri A., Walter A., Covell D., Eidelman O. PH dependent fusion of vesicular stomatitis virus with Vero cells. Measurement by dequenching of octadecyl rhodamine fluorescence. J. Biol. Chem. 1987;262:13614–13619. [PubMed] [Google Scholar]
- Boulay F., Doms R.W., Wilson I., Helenius A. The influenza hemagglutinin precursor as an acid sensitive probe of the biosynthetic pathway. EMBO J. 1987;6:2643–2650. doi: 10.1002/j.1460-2075.1987.tb02555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boulay F., Doms R.W., Webster R., Helenius A. Post-translational oligomerization and cooperative acid-activation of mixed influenza hemagglutinin trimers. J. Cell Biol. 1987;106:629–639. doi: 10.1083/jcb.106.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braunwald J., Nonnenmacher H., Tripier-Darcey F. Ultrastructural and biochemical study of frog virus 3 uptake by BHK-21 cells. J. Gen. Virol. 1985;66:283–293. doi: 10.1099/0022-1317-66-2-283. [DOI] [PubMed] [Google Scholar]
- Brown M.S., Anderson R.G.W., Goldstein J.L. Recycling receptors, the round trip itinerary of migrant membrane proteins. Cell. 1983;32:663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
- Bundu-Morita K., Gibson S., Lenard J. Estimation by radiation inactivation of the size of functional units governing Sendai and influenza virus fusion. Biochemistry. 1987;26:6223–6227. doi: 10.1021/bi00393a040. [DOI] [PubMed] [Google Scholar]
- Burness A.T.H. Glycophorin and sialylated components as receptors for viruses. Recept. Recognition, Ser. B. 1981;8:63–84. [Google Scholar]
- Burness A.T.H., Pardoe I.U. A sialoglycopeptide from human erythrocytes with receptor-like properties for encephalomyocarditis viruses. J. Gen. Virol. 1983;64:1137–1148. doi: 10.1099/0022-1317-64-5-1137. [DOI] [PubMed] [Google Scholar]
- Campadelli-Fiume G., Arsenakis M., Farbegoli F., Roizman B. Entry of herpes simplex virus 1 in BJ cells that constitutively express viral glycoprotein D is by endocytosis and results in degradation of the virus. J. Virol. 1988;62:159–167. doi: 10.1128/jvi.62.1.159-167.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carrillo E.C., Giachetti C., Campos R.H. Effect of lysosomotropic agents on the foot and mouth disease virus replication. Virology. 1984;135:542–545. doi: 10.1016/0042-6822(84)90208-3. [DOI] [PubMed] [Google Scholar]
- Carrillo E.C., Giachetti C., Campos R. Early steps in FMDV replication: Further analysis on the effects of chloroquine. Virology. 1985;147:118–125. doi: 10.1016/0042-6822(85)90232-6. [DOI] [PubMed] [Google Scholar]
- Cash P. Inhibition of La Crosse virus replication by monesin, a monovalent ionophore. J. Gen. Virol. 1982;59:193–196. doi: 10.1099/0022-1317-59-1-193. [DOI] [PubMed] [Google Scholar]
- Cassell S., Edwards J., Brown D.T. Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J. Virol. 1984;52:857–864. doi: 10.1128/jvi.52.3.857-864.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choppin P.W., Compans R.W. Replication of paramyxoviruses. Compr. Virol. 1975;4:94–178. [Google Scholar]
- Choppin P.W., Scheid A. The role of viral glycoproteins in adsorption, penetration and pathogenecity of virus. Rev. Infect. Dis. 1980;2:40–61. doi: 10.1093/clinids/2.1.40. [DOI] [PubMed] [Google Scholar]
- Chow M., Filman J.F.E., Hogle J.M., Rowlands D.J., Brown F. Myristylation of picorna virus capsid protein VP4 and its structural significance. Nature (London) 1987;327:482–486. doi: 10.1038/327482a0. [DOI] [PubMed] [Google Scholar]
- Citovsky V., Loyter A. Fusion of Sendai virus or reconstituted Sendai virus envelopes with liposomes or erythrocyte membranes lacking virus receptors. J. Biol. Chem. 1985;260:12702–12777. [PubMed] [Google Scholar]
- Citovsky V., Rottem S., Nussbaum O., Laster Y., Rott R., Loyter A. Animal viruses are able to fuse with prokaryotic cells. Fusion between Sendai or influenza virions and mycoplasma. J. Biol. Chem. 1988;263:461–467. [PubMed] [Google Scholar]
- Co M.S., Gaulton G.N., Fields B.N., Greene M.I. Isolation and characterisation of the mammalian reovirus type 3 cell surface receptor. Proc. Natl. Acad. Sci. U. S. A. 1985;82:1494–1498. doi: 10.1073/pnas.82.5.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Co M.S., Gaulton G.N., Tominaga A., Homey C.J., Fields B.N., Greene M.I. Structural similarities between the mammalianbt-adrenergic and reovirus type 3 receptors. Proc. Natl. Acad. Sci. U. S. A. 1985;82:5315–5318. doi: 10.1073/pnas.82.16.5315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coombs K., Mann E., Edwards J., Brown D.T. Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus ts- mutants in complementation groups D and E. J. Virol. 1981;15:1262–1266. doi: 10.1128/jvi.37.3.1060-1065.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- R. Compans M. Oldstone, and Helenius, A., (eds.) (1988). Cell biology of virus entry, assembly and pathogenesis. UCLA Symp. Mol. Cell. Biol., in press
- Cutler D.F., Garoff H. Mutants of the membrane binding region of Semliki Forest virus E2 protein: I. Cell surface transport and fusogenic activity. J. Cell Biol. 1986;102:889–901. doi: 10.1083/jcb.102.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dales S. Early events in cell virus interactions. Bacteriol. Rev. 1973;37:103–135. doi: 10.1128/br.37.2.103-135.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dales S. Penetration of animal viruses into cells. In: Silverstein S.C., editor. “Transport of Macromolecules in Cellular Systems”. Dahlem Konferenzen; Berlin: 1978. pp. 47–48. [Google Scholar]
- Dalgleish A.G., Beverley P.C.L., Clapham P.R., Crawford D.H., Greaves M.F., Weiss R.A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature (London) 1984;312:763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
- Dalziel R.G., Watt N.J., Hopkins J., McConnel I. Identification of a cellular receptor for visna virus. J. Cell. Biochem. Suppl. 1988;25c:16. [Google Scholar]
- Davey J., Dimmock J., Coleman A. Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes. Cell. 1985;40:667–675. doi: 10.1016/0092-8674(85)90215-6. [DOI] [PubMed] [Google Scholar]
- Dietzschold B., Tollis M., Lafon M., Wunner W.H., Koprowski H. Mechanisms of rabies virus neutralization by glycoprotein specific monoclonal antibodies. Virology. 1987;161:29–36. doi: 10.1016/0042-6822(87)90167-x. [DOI] [PubMed] [Google Scholar]
- Diment S., Leech M.L., Stahl P.D. Cathepsin D is membrane associated in macrophage endosomes. J. Biol. Chem. 1988;263:6901–6907. [PubMed] [Google Scholar]
- Dimmock N.J. Initial stages in infection with animal viruses. J. Gen. Virol. 1982;59:1–22. doi: 10.1099/0022-1317-59-1-1. [DOI] [PubMed] [Google Scholar]
- Dingwall C., Laskey R.A. Protein import into the cell nucleus. Annu. Rev. Cell Biol. 1986;2:367–390. doi: 10.1146/annurev.cb.02.110186.002055. [DOI] [PubMed] [Google Scholar]
- Doms R.W., Helenius A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J. Virol. 1986;60:833–839. doi: 10.1128/jvi.60.3.833-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doms R.W., Helenius A. Properties of a viral fusion protein. In: Ohki S., Doyle D., Flanagan T.D., Hui S.W., Mayhew E., editors. “Molecular Mechanisms of Membrane Fusion”. Plenum; New York: 1988. [Google Scholar]
- Doms R.W., Helenius A., White J. Membrane fusion activity of the influenza virus hemagglutinin. The low p H-induced conformational change. J. Biol. Chem. 1985;260:2973–2981. [PubMed] [Google Scholar]
- Doms R.W., Keller D.S., Helenius A., Balch W.E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 1987;105:1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doms R.W., Stegmann T., Helenius A. Penetration of influenza virus into host cells. In: Notkins A.L., Oldstone M.B.A., editors. “Concepts in Viral Pathogenesis III”. Springer-Verlag; New York: 1989. in press. [Google Scholar]
- Dourmashkin R.A., Tyrell D.A.J. Electron microscopic observations on the entry of influenza virus into susceptible cells. J. Gen. Virol. 1974;24:129–141. doi: 10.1099/0022-1317-24-1-129. [DOI] [PubMed] [Google Scholar]
- Doxsey S.J., Brodsky F.M., Blank G.S., Helenius A. Inhibition of endocytosis by anti-clathrin antibodies. Cell. 1987;20:453–463. doi: 10.1016/0092-8674(87)90499-5. [DOI] [PubMed] [Google Scholar]
- Dubovi E.F., Wagner R.R. Spatial relationship of the proteins of vesicular stomatitis virus: Induction of reversible oligomers by cleavable protein cross-linking in solution. J. Virol. 1977;22:500–509. doi: 10.1128/jvi.22.2.500-509.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards J., Brown D.T. Sindbis virus-mediated cell fusion from without is a two-step event. J. Gen. Virol. 1986;67:377–380. doi: 10.1099/0022-1317-67-2-377. [DOI] [PubMed] [Google Scholar]
- Edwards J., Mann E., Dennis D.T. Conformational changes in Sindbis virus envelope proteins accompanying exposure to low p H. J. Virol. 1983;45:1090–1097. doi: 10.1128/jvi.45.3.1090-1097.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eppstein D.A., Marsh Y.V., Schreiber A.B., Newman A.B., Todaro G.J., Nestor J.J. Epidermal growth factor occupancy inhibits vaccinia virus infection. Nature (London) 1985;318:663–665. doi: 10.1038/318663a0. [DOI] [PubMed] [Google Scholar]
- Feldherr C.M., Kartenback E., Schultz N. Movement of a karyophilic protein through the nuclear pores of oocytes. J. Cell Biol. 1984;99:2216–2222. doi: 10.1083/jcb.99.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fingeroth J.D., Weiss J.J., Tedder T.F., Strominger J.L., Biro P.A., Fearon D.T. Epstein-Barr virus receptor of human B-lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. U. S. A. 1984;81:4510–4514. doi: 10.1073/pnas.81.14.4510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frade R., Barel M., Ehlin-Henriksson B., Klein G. Gpl40, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc. Natl. Acad. Sci. U. S. A. 1985;82:1490–1493. doi: 10.1073/pnas.82.5.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fries E., Helenius A. Binding of Semliki Forest virus and its spike glycoproteins to cells. Eur. J. Biochem. 1979;97:213–220. doi: 10.1111/j.1432-1033.1979.tb13105.x. [DOI] [PubMed] [Google Scholar]
- Froshauer S., Kartenbeck J., Helenius A. Alphavirus RNA replication occurs on the cytoplasmic surface of endosomes and lysosomes. J. Cell. Biol. 1988;107:2075–2086. doi: 10.1083/jcb.107.6.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuchs R., Ellinger A., Pavelka M., Peterlik M., Mellman I. Endocytic coated vesicles do not exhibit ATP-dependent acidification in vitro. J. Cell Biol. 1987;105:91a. doi: 10.1073/pnas.91.11.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller A.O., Spear P.G. Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at one cell surface. Proc. Natl. Acad. Sci. U. S. A. 1987;84:5454–5458. doi: 10.1073/pnas.84.15.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller S.D. The T = 4 envelope of Sindbis virus is organized by interactions with a complementary T = 3 capsid. Cell. 1987;48:932–934. doi: 10.1016/0092-8674(87)90701-x. [DOI] [PubMed] [Google Scholar]
- Von Fuller S.D., Bonsdorff C.-H., Simons K. Cell surface influenza haemagglutinin can mediate infection by other animal viruses. EMBO J. 1985;4:2475–2485. doi: 10.1002/j.1460-2075.1985.tb03959.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabel C., Dubey L., Steinberg S., Gershon M., Gershon A. Mannose 6-phosphate (man 6-P) in an envelope glycoprotein of varicellazoster virus: Possible role in infectivity. Cell Biochem. Suppl. 1988;12c:33. [Google Scholar]
- Gaulton G., Co M.S., Greene M.I. Anti-idiotypic antibody identifies the cellular receptor of reovirus type 3. J. Cell Biochem. 1985;28:69–78. doi: 10.1002/jcb.240280110. [DOI] [PubMed] [Google Scholar]
- Geraldes A., Valdeira M.L. Effect of choloroquine on African swine virus infection. J. Gen. Virol. 1985;66:1145–1148. doi: 10.1099/0022-1317-66-5-1145. [DOI] [PubMed] [Google Scholar]
- Gething M.J., White J., Waterfield M. Purification of the fusion protein of Sendai virus: Analysis of the NH2-terminal sequence generated during precursor activation. Proc. Natl. Acad. Sci. U. S. A. 1978;75:2737–2740. doi: 10.1073/pnas.75.6.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gething M.J., Doms R.W., York D., White J. Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus. J. Cell Biol. 1986;102:11–23. doi: 10.1083/jcb.102.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J.L., Brown M.S., Anderson R.G.W., Russell D.W., Schneider W.J. Receptor mediated endocytosis: Concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
- Gollins S.W., Porterfield J.S. Flavivirus infection enhancement in macrophages: An electron microscopic study of viral cellular entry. J. Gen. Virol. 1985;66:1969–1982. doi: 10.1099/0022-1317-66-9-1969. [DOI] [PubMed] [Google Scholar]
- Collins S.W., Porterfield J.S. p H-dependent fusion between flavivirus West Nile and liposomal model membranes. J. Gen. Virol. 1986;67:157–166. doi: 10.1099/0022-1317-67-1-157. [DOI] [PubMed] [Google Scholar]
- Gollins S.W., Porterfield J.S. The uncoating and infectivity of the flavivirus West Nile on interaction with cells: Effects of p H and ammonium chloride. J. Gen. Virol. 1986;67:1941–1950. doi: 10.1099/0022-1317-67-9-1941. [DOI] [PubMed] [Google Scholar]
- Collins S.W., Porterfield J.S. A new mechanism for the neutralization of enveloped viruses by antiviral antibody. Nature (London) 1986;321:244–246. doi: 10.1038/321244a0. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Scarano F. La Crosse virus Gl glycoprotein undergoes a conformational change at the p H effusion. Virology. 1985;140:209–216. doi: 10.1016/0042-6822(85)90359-9. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Scarano F., Pobjecky N., Nathanson N. La Crosse bunyavirus can mediate p H-dependent fusion from without. Virology. 1984;132:222–225. doi: 10.1016/0042-6822(84)90107-7. [DOI] [PubMed] [Google Scholar]
- Griffiths G.R., Consigli R.A. Cross-linking of a polyoma virus attachment protein to its mouse kidney cell receptor. J. Virol. 1986;58:773–781. doi: 10.1128/jvi.58.3.773-781.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimley P.M., Levin J.G., Berezsky I.K., Friedman R.M. Specific membranes structures associated with the replication of group A arboviruses. J. Virol. 1972;10:492–503. doi: 10.1128/jvi.10.3.492-503.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grundy J.E., McKeating J.A., Ward P.J., Sanderson A.R., Griffiths P.D. Microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class I HLA molecules to be used as a virus receptor. J. Gen. Virol. 1987;68:793–803. doi: 10.1099/0022-1317-68-3-793. [DOI] [PubMed] [Google Scholar]
- Barter C., Bächi T., Semenza G., Brunner J. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low p H. Biochemistry. 1988;27:1856–1864. doi: 10.1021/bi00406a010. [DOI] [PubMed] [Google Scholar]
- Hayward A.M. Fusion of virus membranes with phospholipid vesicles at neutral p H. In: Wilschut J., Hoekstra D., editors. “Cellular membrane fusion”. Dekker; New York: 1989. in press. [Google Scholar]
- Haywood A.M., Boyer B.P. Fusion of influenza virus membranes with liposomes at p H 7.5. Proc. Natl. Acad. Sci. U. S. A. 1982;82:4611–4615. doi: 10.1073/pnas.82.14.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A. Semliki Forest virus penetration from endosomes: A morphological study. Biol. Cell. 1984;51:181–186. doi: 10.1111/j.1768-322x.1984.tb00297.x. [DOI] [PubMed] [Google Scholar]
- Helenius A., Morein B., Fries E., Simons K., Robinson P., Schirrmacher V., Terhorst C., Strominger J.L. Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus. Proc. Natl. Acad. Sci. U. S. A. 1978;75:3846–3850. doi: 10.1073/pnas.75.8.3846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Marsh M., White J. The entry of viruses into animal cells. Trends Biochem. Sci. 1980;5:104–106. [Google Scholar]
- Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Marsh M., White J. Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J. Gen. Virol. 1982;58:47–61. doi: 10.1099/0022-1317-58-1-47. [DOI] [PubMed] [Google Scholar]
- Helenius A., Mellman I., Wall D., Hubbard A. Endosomes. Trends Biochem. Sci. 1983;8:245–250. [Google Scholar]
- Helenius A., Kielian M., Wellsteed J., Mellman I., Rudnick G. Effects of monovalent cations on Semliki Forest virus entry into BHK-21 cells. J. Biol. Chem. 1985;260:5691–5697. [PubMed] [Google Scholar]
- A. Helenius M. Kielian I. Mellman S. Schmid (1988). Entry of enveloped viruses into their host cells. UCLA Symp. Mol. Cell. Biol., in press
- Hennache B., Boulanger P. Biochemical study of KB—Cell receptor for adenovirus. Biochem. J. 1977;166:237–247. doi: 10.1042/bj1660237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrler G., Rott R., Klenk H.-D. Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology. 1985;141:144–147. doi: 10.1016/0042-6822(85)90190-4. [DOI] [PubMed] [Google Scholar]
- Hoekstra D., Wilschut J. “Cellular Membrane Fusion,”. Dekker; New York: 1989. in press. [Google Scholar]
- Hogle J.M. The three-dimensional structure of polio virus: Implications for cell entry and pathogenesis. J. Cell Biochem. Suppl. 1988;25c:3. [Google Scholar]
- Hogle J.M., Chow M., Filman D.J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985;229:1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
- Holmes K.V., Stephensen C.B., Williams R.K., Compton S.R. Corona virus receptors: Molecular biology and role in species specificity. J. Cell Biochem. Suppl. 1988;25c:4. [Google Scholar]
- Homma M., Ohuchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. J. Virol. 1973;12:1457–1465. doi: 10.1128/jvi.12.6.1457-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu N.C., Scheid A., Choppin P.W. Fusion of Sendai virus with liposomes: Dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology. 1983;126:361–369. doi: 10.1016/0042-6822(83)90485-3. [DOI] [PubMed] [Google Scholar]
- Huang R.T., Uslu G. Interplay between lipids and viral glycoproteins during hemolysis and fusion by influenza virus. J. Biol. Chem. 1986;261:12911–12914. [PubMed] [Google Scholar]
- Hummeler K., Tomassini N., Sokol F. Morphological aspects of the uptake of simian virus 40 by permissive cells. J. Virol. 1970;6:87–93. doi: 10.1128/jvi.6.1.87-93.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter E., Einfeld D. Oligomerization of Rous sarcoma virus glycoprotein complex. J. Cell Biochem. Suppl. 1988;25c:43. [Google Scholar]
- Hunter E., Hill E., Hardwick M., Brown A., Schwartz D.E., Tizand R. Complete sequence of the Rouse sarcoma virus env gene: Identification of structural and functional regions of its products. J. Virol. 1983;46:920–936. doi: 10.1128/jvi.46.3.920-936.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inada T., Mims C.A. Mouse la antigens are receptors for lactate dehydrogenase virus. Nature (London) 1984;309:59–61. doi: 10.1038/309059a0. [DOI] [PubMed] [Google Scholar]
- Janeczko R.A., Rodriquez J.F., Esteban M. Studies on the mechanism of entry of vaccinia virus in animal cells. Arch. Virol. 1987;92:135–150. doi: 10.1007/BF01310068. [DOI] [PubMed] [Google Scholar]
- Johnson A.P., Rosner M.R. Characterization of murine-specific leukemia virus receptor from L cells. J. Virol. 1986;58:900–908. doi: 10.1128/jvi.58.3.900-908.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalderon D., Roberts B.L., Richardson W.D., Smith A. A short amino acid sequence able to specify nuclear location. Cell. 1986;39:489–509. doi: 10.1016/0092-8674(84)90457-4. [DOI] [PubMed] [Google Scholar]
- Kawasaki K., Sato S.B., Ohnishi S. Membrane fusion activity of reconstituted vesicles of influenza virus hemagglutinin glycoproteins. Biochim. Biophys. Acta. 1983;733:286–290. doi: 10.1016/0005-2736(83)90534-5. [DOI] [PubMed] [Google Scholar]
- Kempf C., Michel M.R., Kohler U., Koblet H. A novel method for the detection of early events in cell-cell fusion of Semliki Forest virus infected cells growing in monolayer cultures. Arch. Virol. 1987;95:283–289. doi: 10.1007/BF01310786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khélifa R., Menezes J. Sendai virus envelopes can mediate Epstein-Barr virus binding to and penetration into Epstein-Barr virus receptor-negative cells. J. Virol. 1983;46:325–332. doi: 10.1128/jvi.46.1.325-332.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kielian M., Helenius A. The role of cholesterol in the fusion of Semliki Forest virus with membranes. J. Virol. 1984;52:981–983. doi: 10.1128/jvi.52.1.281-283.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kielian M., Helenius A. p H-induced alterations in the fusogenic spike protein of Semliki forest virus. J. Cell Biol. 1985;101:2284–2291. doi: 10.1083/jcb.101.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kielian M., Helenius A. Entry of alphaviruses. In: Schlesinger S.S., Schlesinger M.J., editors. “The Togaviridae and Flaviviridae”. Plenum; New York: 1986. pp. 91–119. [Google Scholar]
- Kielian M.C., Marsh M., Helenius A. Kinetics of endosome acidification detected by mutant and wild type Semliki Forest virus. EMBO J. 1986;5:3103–3109. doi: 10.1002/j.1460-2075.1986.tb04616.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura T., Collins S.W., Porterfield J.S. The effect of p H on the early interaction of West Nile virus with P388D1 cells. J. Gen. Virol. 1986;67:2423–2433. doi: 10.1099/0022-1317-67-11-2423. [DOI] [PubMed] [Google Scholar]
- Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J.C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature (London) 1984;312:767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
- Kohno K., Sambrook J., Gething M.-J. Effect of lysosomotropic agents on the entry of vaccinia virus into CV-1 cells. J. Cell Biochem. Suppl. 1988;25c:29. [Google Scholar]
- Kowalski M., Potz J., Basiripour L., Dorfman T., Goh W.C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science. 1987;237:1351–1355. doi: 10.1126/science.3629244. [DOI] [PubMed] [Google Scholar]
- Koyama A.H., Uchida T. The mode of entry of herpes simplex virus type 1 into vero cells. Microbiol.-Immunol. 1987;31:123–130. doi: 10.1111/j.1348-0421.1987.tb03075.x. [DOI] [PubMed] [Google Scholar]
- Krzystyniak K., Dupuy J.M. Entry of mouse hepatitis virus 3 into cells. J Gen. Virol. 1984;65:227–231. doi: 10.1099/0022-1317-65-1-227. [DOI] [PubMed] [Google Scholar]
- Lambrecht B., Schmidt M.F. Membrane fusion induced by influenza virus hemagglutinin requires protein bound fatty acids. FEBS Lett. 1986;202:127–132. doi: 10.1016/0014-5793(86)80662-7. [DOI] [PubMed] [Google Scholar]
- Landsberger F.R., Schegal P.B. Protein mediated of viral and cellular membranes. In: Crowell R.L., Lonberg-Holm K., editors. “Virus Attachment and Entry into Cells”. ASM Press; 1986. [Google Scholar]
- Lasky L.A., Nakamura G., Smith D.H., Fennie C., Shimasaki C., Patzer E., Berman P., Gregory T., Capon D.J. Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell. 1987;50:975–985. doi: 10.1016/0092-8674(87)90524-1. [DOI] [PubMed] [Google Scholar]
- Lentz T.L., Burrage T.G., Smith A.L., Crick J., Tignor G.H. Is the acetylcholine receptor a rabies virus receptor. Science. 1982;215:182–184. doi: 10.1126/science.7053569. [DOI] [PubMed] [Google Scholar]
- Lonberg-Holm K. Attachment of animal viruses to cells: An introduction, Recept. Recognition, Ser. 1981;B 8:1–20. [Google Scholar]
- K. Lonberg-Holm, and R. L. Crowell (eds.) (1986). Virus attachment and entry into cells. Microbiol. Rev.
- Lonberg-Holm K., Philipson L. Early interaction between animal viruses and cells. Monogr. Virol. 1974;9:1–149. [PubMed] [Google Scholar]
- Lonberg-Holm K., Crowell R.L., Philipson L. Unrelated animal viruses share receptors. Nature (London) 1976;259:679–681. doi: 10.1038/259679a0. [DOI] [PubMed] [Google Scholar]
- Ludert J.E., Michelangeli F., Gil F., Liprandi F., Esparza J. Penetration and uncoating of rotaviruses in cultured cells. Intervirology. 1987;27:95–101. doi: 10.1159/000149726. [DOI] [PubMed] [Google Scholar]
- McClure M.O., Marsh M., Weiss R.A. Human immunodeficiency virus infection of CD4-bearing cells occurs by a p H-independent mechanism. EMBO J. 1987;7:513–518. doi: 10.1002/j.1460-2075.1988.tb02839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDougal J.S., Kennedy M.S., Sligh J.M., Cort S.P., Mawle A., Nicholson J.K.A. Binding of HTLV-3/LAV to T4 + T-cells by a complex of the 110k viral protein and the T4 molecule. Science. 1986;231:382–385. doi: 10.1126/science.3001934. [DOI] [PubMed] [Google Scholar]
- McGuire T.C., Adams S., Johnson G.C., Klevjer-Andereon P., Barbee D.D., Gorham J.R. Acute arthritis in caprine arthritis-encephalitis virus challenge exposure of vaccinated or persistently infected goats. Am. J. Vet. Res. 1986;47:537–540. [PubMed] [Google Scholar]
- McKeating J.A., Griffiths P.D., Grundy J.E. Cytomegalovirus in urine specimens has host β2-microglobulin bound to the viral envelope: A mechanism of evading the host immune response. J. Gen. Virol. 1987;68:785–792. doi: 10.1099/0022-1317-68-3-785. [DOI] [PubMed] [Google Scholar]
- Mackay R., Consigli R.A. Early events in polyoma virus infection: Attachment, penetration and nuclear entry. J. Virol. 1976;19:620–636. doi: 10.1128/jvi.19.2.620-636.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maddon P.J., Dalgleish A.G., McDougal J.S., Clapham P.R., Weiss R.A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immunesystem and the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
- Madshus I.H., Olsnes S., Sandvig K. Mechanism of entry into the cytosol of poliovirus type 1: Requirement for low p H. J. Cell Biol. 1984;92:1194–1200. doi: 10.1083/jcb.98.4.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madshus I.H., Olsnes S., Sandvig K. Requirements for entry of poliovirus RNA into cells at low p H. EMBO J. 1984;9:1945–1950. doi: 10.1002/j.1460-2075.1984.tb02074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madshus I.H., Olsnes S., Sandvig K. Different p H requirements for entry of the two picornaviruses, human rhinovirus 2 and murine encephalomyocarditis virus. Virology. 1984;139:346–357. doi: 10.1016/0042-6822(84)90380-5. [DOI] [PubMed] [Google Scholar]
- Madshus I.H., Sandvig K., Olsnes S., van Deurs B. Effect of reduced endocytosis by hypotonic shock and potassium depletion on the infection of Hep G2 cells by picornaviruses. J. Cell. Physiol. 1987;131:14–22. doi: 10.1002/jcp.1041310104. [DOI] [PubMed] [Google Scholar]
- Maeda T., Kawasaki K., Ohnishi S.I. Interaction of influenza hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at p H 5.2. Proc. Natl. Acad. Sci. U. S. A. 1981;78:4133–4137. doi: 10.1073/pnas.78.7.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel B. Virology. 1967;31:702–712. doi: 10.1016/0042-6822(67)90198-5. [DOI] [PubMed] [Google Scholar]
- Mapoles J.E., Krah D.L., Crowell R.L. Purification of a He La cell receptor protein for group B coxsackie viruses. J. Virol. 1985;55:560–566. doi: 10.1128/jvi.55.3.560-566.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maratos-Flier E., King G.L., Verdin E.M. Binding of reovirus to endothelial cells. J. Cell Biochem. Suppl. 1988;25c:19. [Google Scholar]
- Markwell M.A., Portner A., Schwartz A.K. An alternative route of infection for viruses: Entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc. Natl. Acad. Sci. U. S. A. 1982;82:978–982. doi: 10.1073/pnas.82.4.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell M.A.K., Fredman P., Svennerholm L. Receptor ganglioside content of three hosts for Sendai virus. Biochim. Biophys. Acta. 1984;775:7–16. doi: 10.1016/0005-2736(84)90228-1. [DOI] [PubMed] [Google Scholar]
- Marriott S.J., Roeder D.J., Consigli R.A. Anti-idiotypic antibodies to a polyomavirus monoclonal antibody recognize cell surface components of mouse kidney cells and prevent polyomavirus infection. J. Virol. 1987;61:2747–2753. doi: 10.1128/jvi.61.9.2747-2753.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh M. The entry of enveloped viruses into cells by endocytosis. Biochem. J. 1984;218:1–10. doi: 10.1042/bj2180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh M., Helenius A. Adsorptive endocytosis of Semliki Forest virus. J. Mol. Biol. 1980;142:439–454. doi: 10.1016/0022-2836(80)90281-8. [DOI] [PubMed] [Google Scholar]
- Marsh M., Wellstead J., Kern H., Harms E., Helenius A. Monensin inhibits Semliki Forest virus penetration into culture cells. Proc. Natl. Acad. Sci. U. S. A. 1982;79:5297–5301. doi: 10.1073/pnas.79.17.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh M., Bolzau E.-M., Helenius A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell. 1983;32:931–940. doi: 10.1016/0092-8674(83)90078-8. [DOI] [PubMed] [Google Scholar]
- Marsh M., Bolzau E., White J., Helenius A. Interactions of Semliki Forest virus spike glycoprotein rosettes and vesicles with cultured cells. J. Cell Biol. 1983;96:455–461. doi: 10.1083/jcb.96.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massen J.A., Terhorst C. Identification of a cell-surface protein involved in the binding site of Sindbis virus on human lymphoblastic cell lines using a heterobi-functional cross-linker. Eur. J. Biochem. 1981;115:153–158. doi: 10.1111/j.1432-1033.1981.tb06211.x. [DOI] [PubMed] [Google Scholar]
- Mastromarino P., Conti C., Goldoni P., Hauttecoeur B., Orsi N. Characterization of membrane components of the erythocyte involved in vesicular stomatitis virus attachment and fusion at acidic p H. J. Gen. Virol. 1987;68:2359–2369. doi: 10.1099/0022-1317-68-9-2359. [DOI] [PubMed] [Google Scholar]
- Matlin K.S., Reggio H., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 1982;91:601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matlin K.S., Reggio H., Helenius A., Simons K. Pathway of vesicular stomatitis virus entry leading to infection. J. Mol. Biol. 1982;156:609–631. doi: 10.1016/0022-2836(82)90269-8. [DOI] [PubMed] [Google Scholar]
- Maul G.G., Rovera G., Vorbrodt A., Abramczyk J. Of simian virus 40 entry into different cellular compartments. J. Virol. 1978;28:936–944. doi: 10.1128/jvi.28.3.936-944.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxfield F.R. Weak bases and ionophores rapidly and reversibly raise the p H in endocytic vesicles in cultured mouse fibroblasts. J. Cell Biol. 1982;95:676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meager A., Hughes R.C. Virus receptors. Recept. Recognition A. 1977;4:141–195. [Google Scholar]
- Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
- van Metsikko K., Meer G., Simons K. Reconstitution of the fusogenic activity of vesicular stomatitis virus. EMBO J. 1986;5:3429–3435. doi: 10.1002/j.1460-2075.1986.tb04665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mifune K., Ohuchi M., Mannen K. Hemolysis and cell fusion by rhabdoviruses. FEES Lett. 1982;137:293–297. doi: 10.1016/0014-5793(82)80370-0. [DOI] [PubMed] [Google Scholar]
- Miller D.K., Lenard J. Antihistamines, local anesthetics and other amines as antiviral agents. Proc. Natl. Acad. Sci. U. S. A. 1981;78:3605–3609. doi: 10.1073/pnas.78.6.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizzen L., Daya M., Anderson R. The role of protease dependent cell membrane fusion in persistent and lytic infections of murine hepatitis virus. Adv. Exp. Med. Biol. 1987;218:175–186. doi: 10.1007/978-1-4684-1280-2_22. [DOI] [PubMed] [Google Scholar]
- Nemerow G.R., Wolfert R., McNaughton M.E., Cooper N.R. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor. J. Virol. 1985;55:347–351. doi: 10.1128/jvi.55.2.347-351.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishimura T., Kawai N., Kawai M., Notake K., Ichihara I. Fusion of SV40-induced endocytotic vacuoles with the nuclear membrane. Cell. Struct. Funct. 1986;11:135–141. doi: 10.1247/csf.11.135. [DOI] [PubMed] [Google Scholar]
- Notter M.F.D., Leary J.F., Balduzzi P.C. Adsorption of Rous sarcoma virus to genetically susceptible and resistant chicken cells studied by laser flow cytometry. J. Virol. 1982;41:958–964. doi: 10.1128/jvi.41.3.958-964.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nussbaum O., Loyter A. Quantitative determination of virus-membrane fusion events. Fusion of influenza virions with plasma membranes and membranes of endocytic vesicles in living cultured cells. FEBS Lett. 1987;221:61–67. doi: 10.1016/0014-5793(87)80352-6. [DOI] [PubMed] [Google Scholar]
- Nussbaum O., Lapidot M., Loyter A. Reconstitution of functional influenza virus envelopes and fusion with membranes and liposomes lacking virus receptors. J. Virol. 1987;61:2245–2252. doi: 10.1128/jvi.61.7.2245-2252.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohki S., Doyle D., Flanagan T.D., Hui S.W., Mayhew E. “Molecular Mechanisms of Membrane Fusion,”. Plenum; New York: 1988. in press. [Google Scholar]
- Ohkuma S., Poole B. Fluorescence probe measurement of the intra-lysosomal p H in living cells and the perturbation of p H by various agents. Proc. Natl. Acad. Sci. U. S. A. 1978;75:3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oldstone M.B.A., Tishon A., Dutko F.J., Kennedy S.I.T., Holland J.J., Lambert P.W. Does the major histocompatibility complex serve as a specific receptor for Semliki Forest virus. J. Virol. 1980;34:256–265. doi: 10.1128/jvi.34.1.256-265.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neill H.C., McGrath M.S., Allison J.P., Weissman I.L. A subset of T cell receptors associated with L3T4 molecules mediates C6VL leukaemia cell binding of its cognate retrovirus. Cell. 1987;49:143–151. doi: 10.1016/0092-8674(87)90764-1. [DOI] [PubMed] [Google Scholar]
- Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975;189:347–357. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- Pastan I., Seth P., Fitzgerald D., Willingham M. Adenovirus entry into cells: New observations on an old problem. In: Notkins A.L., Oldstone M.B.A., editors. “Concepts in Viral Pathogenesis II”. Springer-Verlag; New York: 1986. pp. 141–146. [Google Scholar]
- Paul A.V., Schultz A., Pincus S.E., Oroszlan S., Wimmer E. Capsid protein VP4 of poliovirus is N-myristoylated. Proc. Natl. Acad. Sci. U. S. A. 1987;84:7827–7831. doi: 10.1073/pnas.84.22.7827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peiris J.S.M., Porterfield J.S. Antibody mediated enhancement of fla-vivirus replication in macrophage-like cell lines. Nature (London) 1979;282:509–511. doi: 10.1038/282509a0. [DOI] [PubMed] [Google Scholar]
- Peiris J.S.M., Gorden S., Unkeless J.C., Porterfield J.S. Monoclonal anti-Fc receptor Ig G blocks antibody enhancement of viral replication in macrophages. Nature (London) 1981;289:189–191. doi: 10.1038/289189a0. [DOI] [PubMed] [Google Scholar]
- Rand R. Interacting phospholipid bilayers: Measured forces and induced structural changes. Annu. Rev. Biophys. Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
- Redmond S., Peters G., Dickson C. Mouse mammary tumor virus can mediate cell fusion at reduced p H. Virol. 1984;133:393–402. doi: 10.1016/0042-6822(84)90405-7. [DOI] [PubMed] [Google Scholar]
- Reisert P.S., Spiro R.C., Townsend P.L., Stanford S.A., Sairenji T., Humphries R.E. Functional association of class II antigens with cell surface binding of Epstein-Bar. virus. J. Immunol. 1985;134:3776–3780. [PubMed] [Google Scholar]
- Richman D.D., Hostetler K.Y., Yazaki P.J., Clark S. Fate of influenza A viron proteins after entry into subcellular fractions of LLC cells and the effect of amantadine. Virology. 1986;151:200–210. doi: 10.1016/0042-6822(86)90042-5. [DOI] [PubMed] [Google Scholar]
- J. K. Rose R. W. Doms (1988). Regulation of protein export from the endoplasmic reticulum. Annu. Rev. Cell Biol., in press [DOI] [PubMed]
- Rose J.K., Gallione C. Nucleotide sequence of the m RNAs encoding the VSV G and M proteins as determined from c DNA clones containing the complete coding regions. J. Virol. 1981;39:519–528. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose J.K., Adams G.A., Gallione C.J. The presence of cystein in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition. Proc. Natl. Acad. Sci. U. S. A. 1984;81:2050–2054. doi: 10.1073/pnas.81.7.2050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal K.S., Perez R., Hodnichak C. Inhibition of herpes simplex virus type 1 penetration by cytochalasins B and D. J. Gen. Virol. 1985;66:1601–1605. doi: 10.1099/0022-1317-66-7-1601. [DOI] [PubMed] [Google Scholar]
- Rossmann M.G., Palmenberg A.C. Conservation of the putative receptor attachment site in picornaviruses. Virology. 1988;164:373–382. doi: 10.1016/0042-6822(88)90550-8. [DOI] [PubMed] [Google Scholar]
- Rossmann M.G., Arnold E., Erickson J.W., Frankenberger E.A., Griffith J.P., Hecht H.J., Johnson J.E., Kamer G., Luo M., Mosser A.G., Rueckert R.R., Sherry B., Vriend G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (London) 1985;317:145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
- Ruigrok R.W., Wrigley N.G., Calder L.J., Cusack S., Wharton S.A., Brown E.B., Skehel J.J. Electron microscopy of the low p H structure of influenza virus haemagglutinin. EMBO J. 1986;5:41–49. doi: 10.1002/j.1460-2075.1986.tb04175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarnieto M., Haffey M., Spear P.G. Membrane protein specified by Herpes Simplex viruses. III. Role of glycoprotein VP7(B2) in virus infectivity. J. Virol. 1979;29:1149–1158. doi: 10.1128/jvi.29.3.1149-1158.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattentau Q.J., Weiss R.A. The CD4 antigen, physiological ligand and HIV-receptor. Cell. 1988;52:631–633. doi: 10.1016/0092-8674(88)90397-2. [DOI] [PubMed] [Google Scholar]
- Scheid A., Choppin P. Protease activation mutants of Sendai virus: Activation of biological properties by specific proteases. Virology. 1976;69:265–277. doi: 10.1016/0042-6822(76)90213-0. [DOI] [PubMed] [Google Scholar]
- Scheule R.K. Novel preparation of functional Sindbis virosomes. Biochemistry. 1986;25:4223–4232. doi: 10.1021/bi00363a009. [DOI] [PubMed] [Google Scholar]
- Scheule R.K. Fusion of Sindbis virus with model membranes containing phosphatidylethanolamine: Implications for protein induced membrane fusion. Biochim. Biophys. Acta. 1987;899:185–195. doi: 10.1016/0005-2736(87)90399-3. [DOI] [PubMed] [Google Scholar]
- Schlegel R., Wade M. A synthetic peptide corresponding to the NH2 terminus of vesicular stomatitis virus glycoprotein is a p H-dependent hemolysis. J. Biol. Chem. 1984;259:4691–4694. [PubMed] [Google Scholar]
- Schlegel R., Tralka T.S., Willingham M.C., Pastan I. Inhibition of VSV binding and infectivity by phosphotidylserine. Is phosphatidylserine a VSV binding site. Cell. 1983;32:639–646. doi: 10.1016/0092-8674(83)90483-x. [DOI] [PubMed] [Google Scholar]
- Schlesinger M.J., Schlesinger S. Formation and assembly of alphavirus glycoproteins. In: Shlesinger S., Schlesingen M.J., editors. “The Togaviridae and Flavividae”. Plenum; New York: 1986. pp. 121–148. [Google Scholar]
- S. Schmid M. Kielian A. Helenius J. Mellman (1989). Acidification of endosome subpopulations in wild type CHO cells and temperature sensitive acidification-defective mutants. J. Cell Biol., in press [DOI] [PMC free article] [PubMed]
- Schoy C., Philippot J.R., Bienveul A. F-protein-F-protein interaction within the Sendai virus identified by native binding on chemical cross linking. J. Biol Chem. 1987;262:11519–11523. [PubMed] [Google Scholar]
- Shimura H., Umeno Y., Kimura G. Effects of inhibitors of the cytoplasmic structures and functions on the early phase of infection of cultured cells with simian virus 40. Virology. 1987;158:34–43. doi: 10.1016/0042-6822(87)90235-2. [DOI] [PubMed] [Google Scholar]
- Silverstein S.C., Dales S. The penetration of reovirus RNA and initiation of its genetic function in L-strain fibroblasts. J. Cell Biol. 1968;35:197–230. [PubMed] [Google Scholar]
- M. Sommerfelt M. Marsh (1988). Binding and entry of animal viruses. Drug Targetting Rev., in press
- Spear P.G., Wittels M., Wu Dunn D., Johnson R. Herpes simplex virus: Entry into and egress from the cell. J. Cell. Biochem. Suppl. 1988;12c:13. [Google Scholar]
- Stegmann T. Membrane fusion activity of influenza virus. Rijks Universitiet; Groningen: 1987. Ph. D. Thesis. [Google Scholar]
- Stegmann T., Hoekstra D., Scherphof G., Wilschut J. Kinetics of p H-dependent fusion between influenza virus and liposomes. Biochemistry. 1985;24:3107–3113. doi: 10.1021/bi00334a006. [DOI] [PubMed] [Google Scholar]
- Stegmann T., Hoekstra D., Scherphof G., Wilschut J. Fusion activity of influenza hemagglutinin: A comparison between artificial and biological membrane vesicles. J. Biol. Chem. 1986;261:10966–10979. [PubMed] [Google Scholar]
- Stegmann T., Morselt H.W.M., van Booy F.P., Breemen J.P.L., Scherphof G., Wilschut J. Functional reconstitution of influenza virus envelopes. EMBO J. 1987;6:2651–2659. doi: 10.1002/j.1460-2075.1987.tb02556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stegmann T., Morselt H.W.M., Scholma J., Wilschut J. Fusion of influenza virus in an intracellular acidic compartment measured by fluorescence dequenching. Biochim. Biophys. Acta. 1987;904:165–170. doi: 10.1016/0005-2736(87)90100-3. [DOI] [PubMed] [Google Scholar]
- T. Stegmann R. Doms A. Helenius (1989). Protein-mediated membrane fusion. Annu. Rev. Biophys. Chem., in press [DOI] [PubMed]
- Stein B.S., Gowda S.D., Lifson J.D., Penhallow R.C., Bensch K.G., Engleman E.G. p H-independent HIV entry into CD4-positive cells via virus envelope fusion to the plasma membrane. Cell. 1987;49:659–668. doi: 10.1016/0092-8674(87)90542-3. [DOI] [PubMed] [Google Scholar]
- Steinman R.M., Mellman L, Muller W.A., Cohn Z.A. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 1983;96:1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L., Richard C.S., Holmes K. Proteolytic cleavage of the E2 glycoprotein of murine corona virus. J. Virol. 1985;56:906–910. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturzenbecker L.J., Nibert M., Furlong D., Fields B.N. Intracellular digestion of reovirus particles requires a low p H and is an essential step in the viral infectious cycle. J. Virol. 1987;61:2351–2361. doi: 10.1128/jvi.61.8.2351-2361.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Superti F., Derer M., Tsiang H. Mechanism of rabies virus entry into CER cells. J. Gen. Virol. 1984;65:781–789. doi: 10.1099/0022-1317-65-4-781. [DOI] [PubMed] [Google Scholar]
- Superti F., Senganti L., Ruggeri F.M., Tinari A., Donelli G., Orsi N. Entry pathway of vesicular stomatitis virus into different host cells. J. Gen. Virol. 1987;68:387–399. doi: 10.1099/0022-1317-68-2-387. [DOI] [PubMed] [Google Scholar]
- Superti R., Senganti L., Orsi N., Divizzia M., Gabrieli R., Pana A. The effect of lipophilic amines on the growth of hepatitis A virus in Frp/3 cells. Arch. Virol. 1987;96:289–296. doi: 10.1007/BF01320970. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Matsunaga M., Matsumoto M. Acetylneuraminyl-lactosylceramide, GM3-Neu Ac, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection. Binding specificity of influenza virus A/Aichi/2/68 (H3N2) to membrane-associated GM3 with different molecular species of sialic acid. J. Biol. Chem. 1985;260:1362–1365. [PubMed] [Google Scholar]
- Svensson U., Persson R., Everit E. Virus-receptor interaction in the adenovirus system. I. Identification of virion attachment proteins of the He La cell plasma membrane. J. Virol. 1981;38:70–81. doi: 10.1128/jvi.38.1.70-81.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbot P.J., Vance D.E. Biochemical studies on the entry of Sindbis virus into BHK-21 cells and the effect of NH4C1. Virology. 1982;118:451–455. doi: 10.1016/0042-6822(82)90365-8. [DOI] [PubMed] [Google Scholar]
- Tanner J., Weis J., Fearon D., Whang Y., Kieff E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell. 1987;50:203–213. doi: 10.1016/0092-8674(87)90216-9. [DOI] [PubMed] [Google Scholar]
- Tartakoff A. Perturbation of vesicular traffic with the carboxylic ionophore momensim. Cell. 1983;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
- Thung S.N., Gerber M.A. Polyalbumin receptors: Their role in the attachment of hepatitis B virus to hepatocytes. Semin. Liver Dis. 1984;4:69–75. doi: 10.1055/s-2008-1040647. [DOI] [PubMed] [Google Scholar]
- Tignor G.H., Smith A.L., Shope R.E. In: “Concepts in viral pathogenesis”. Notkins A.L., Oldstone M.B.A., editors. Springer-Verlag; New York: 1984. pp. 109–116. [Google Scholar]
- Tomassini J.E., Colonno R.J. Isolation of a receptor protein involved in attachment of human rhinoviruses. J. Virol. 1986;58:290–295. doi: 10.1128/jvi.58.2.290-295.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsing J., Superti F. Ammonium chloride and chloroquine inhibit rabies virus infection in neuroblastoma cells. Arch. Virol. 1984;81:377–382. doi: 10.1007/BF01310010. [DOI] [PubMed] [Google Scholar]
- Tycko B., Maxfield R.F. Rapid acidification of endocytic vesicles containing α2-macroglobulin. Cell. 1982;28:643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
- Vogel R.H., von Provancher S.W., Bonsdorff S.W., Adrian M., Dubochet J. Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature (London) 1986;320:533–535. doi: 10.1038/320533a0. [DOI] [PubMed] [Google Scholar]
- Volkman L.E., Goldsmith K., Hess R.T. Alternate pathway of entry of budded Autographa californica nuclear polyhedrosis virus: Fusion at the plasma membrane. Virology. 1986;148:288–297. doi: 10.1016/0042-6822(86)90326-0. [DOI] [PubMed] [Google Scholar]
- Webster R.G., Askonas B.A. Cross-protection and cross-reactive cytotoxic T-cells induced by influenza virus vaccines in mice. Eur. J. Immunol. 1980;10:396–401. doi: 10.1002/eji.1830100515. [DOI] [PubMed] [Google Scholar]
- Weiss R.A. Tissue-specific transformation by human T-cell leukemia viruses. Nature (London) 1984;310:273–274. doi: 10.1038/310273a0. [DOI] [PubMed] [Google Scholar]
- Wengler G., Wengler G., Novak T., Wahn K. Analysis of the influence of proteolytic cleavage on the structural organization of the surface of the West Nile flavivirus leads to the isolation of a protease resistant E protein oligomer from the viral surface. Virology. 1987;160:210–219. doi: 10.1016/0042-6822(87)90062-6. [DOI] [PubMed] [Google Scholar]
- Wharton S.A. The role of influenza virus haemagglutinin in membrane fusion. Microbiol. Sci. 1987;4:119–124. [PubMed] [Google Scholar]
- White J.M., Helenius A. p H-dependent fusion between Semliki Forest virus membrane and liposomes. Proc. Natl. Acad. Sci. U. S. A. 1980;77:3273–3277. doi: 10.1073/pnas.77.6.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J., Wilson I.A. Anti-peptide. antibodies detect steps in a protein conformational change: Low-p H activation of the influenza virus hemagglutinin. J. Cell Biol. 1987;105:2887–2897. doi: 10.1083/jcb.105.6.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J., Kartenbeck J., Helenius A. Fusion of Semliki Forest virus with the plasma membrane can be induced by low p H. J. Cell Biol. 1980;87:264–272. doi: 10.1083/jcb.87.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J.M., Matlin K., Helenius A. Cell fusion by Semliki Forest, influenza and vesicular stomatitis virus. J. Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J., Helenius A., Gething M.-J. Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature (London) 1982;300:658–659. doi: 10.1038/300658a0. [DOI] [PubMed] [Google Scholar]
- White J., Kartenbeck J., Helenius A. Membrane fusion activity of influenza virus. EMBO J. 1982;1:217–222. doi: 10.1002/j.1460-2075.1982.tb01150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped viruses. Q. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
- Wiley D.C., Skehel J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987;56:365–373. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
- Wilson I.A., Skehel J.J., Wiley D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature (London) 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
- Wolf J.L., Kauffman R.S., Finberg R., Dambrauskas R., Fields B.N., Trier J.S. Determinants of reovirus interaction with the intestinal M cells and adsorptive cells of murine intestine. Gastroenterology. 1983;85:291–300. [PubMed] [Google Scholar]
- Woodgett C., Rose J.K. Amino-terminal mutations of the vesicular stomatitis virus glycoprotein does not affect is fusion activity. J. Virol. 1986;59:486–489. doi: 10.1128/jvi.59.2.486-489.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D. Wu Dunn P. G. Spear (1987). Cell surface receptor for herpes simplex virus is heparan sulphate proteoglycan. Proc. Int. Herpes Virus Workshop, 12th p. 107 (Abstr.)
- Yamada S., Ohnishi S. Vesicular stomatitis virus binds and fuses with phospholipid domains in target cell membrane. Biochemistry. 1986;25:3703–3708. doi: 10.1021/bi00360a034. [DOI] [PubMed] [Google Scholar]
- Yoshimura A., Ohnishi S.-I. Uncoating of influenza virus in endosomes. J. Virol. 1984;51:497–504. doi: 10.1128/jvi.51.2.497-504.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura A., Kuroda K., Kawasaki K., Yamashira S., Maeda T.M., Ohnishi S.I. Infectious cell entry mechanism of influenza virus. J. Virol. 1982;43:284–293. doi: 10.1128/jvi.43.1.284-293.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimura A., Kobayashi T., Hidaka K., Kuwano M., Ohnishi S. Altered interaction between Sendai virus and a Chinese hamster cell mutant with defective cholesterol synthesis. Biochim. Biophys. Acta. 1987;904:159–164. doi: 10.1016/0005-2736(87)90099-x. [DOI] [PubMed] [Google Scholar]
- Young J.D., Young G.P., Cohn Z.A., Lenard J. Interaction of enveloped viruses with planar bilayer membranes: Observations on Sendai, influenza, vesicular stomatitis, and Semliki Forest viruses. Virology. 1983;128:186–194. doi: 10.1016/0042-6822(83)90329-x. [DOI] [PubMed] [Google Scholar]
- Zeichardt J., Wetz K., Willingmann P., Havermehl K.O. Entry of poliovirus type 1 and mouse eberfeld (ME) virus into HEp-2 cells: Receptor-mediated endocytosis and endosomal or lysosomal uncoating. J. Gen. Virol. 1985;66:483–492. doi: 10.1099/0022-1317-66-3-483. [DOI] [PubMed] [Google Scholar]